Programmingin C
an introduction

PRCfor E

Maaten Pennings

Version 0.5(2007-12-31)

0 Preface

Thisbodk explains the C programming language. It assumes no programming krowledge. The reader is
suppased to be somewhat famili ar with binary arithmetic. Some knowledge of operating a computer is required
in order to be able to use a @mpil er, which is needed for doing the exercises at the end of this bodk.

0.1 Position of this module (PRC for E)

Thisbodk was pedficdly written to suppat module 3 (PRC) for the trgjecory SPR (system programmer) for
Eledronics gudents. The first module of SPR (ICM) presents sufficient badkground knowledge on signed and
unsigned integers and their operations (additi on, shifting, etc). The PRC module lays the groundworks for the
last SPR module LLP (low level programming). In LLP the C programming language is used on a small
microcontroll er.

The standard PRC course (as oppased to the PRC for E that this bodk is written for) assumes previous
programming experience. As aresult, the standard PRC course does not explain what a variable, type,
expresson, statement or function is, it merely tells how to write them down in C. The PRC for E course does
explain what they are, but as a cnsequence, it skips sme of the more advanced topics. Most notably, PRC for E
(this bodk) does nat explain pointers.

Fortunately, pointers are not used in LLP. So PRC for E is sufficient in that sense.

However, those who want to program in C, should lean pointers. C without pointersislike driving a ca in first
gea only.

0.2 Aboutthe usage of English

We understand that for Dutch students, English is harder than Dutch. We therefore aonsidered writing this bodk
in Dutch. However, computer scienceis an English dominated profession. Most computer languages are English
based (‘function’, ‘while’, ‘return’, ‘include’). Help fil es are English, most bodks are Engli sh, most forums on
the internet are English. This bodk was assembled from various urces, all were in English.

So, we dedded to write thisbodk in English (but we did fed this justificaion was neeled).

0.3 Structure

Thisbodk istail ored towards a module of 7 weeks. It consists of 6 chapters (chapters 1 to 6), one for ead week.
Chapter 7 (week 7) isfor pradicing an old examination. At the end of the bodk (chapter 8), there is an additional
chapter with exercises, one set of exercises for eat week (8.1-8.6). The dasstime will be two hours on the
theory and two hours on the exercises per week.

The oourse PRCfor E is concluded with a written examination of 100 minutes. The examination is an “open
bodk examination”: it is all owed to bring any kind of written material to the examination (this bodk, exercise
print-outs, personal notes) and even a cdculator (but a plain one, not C programmable one).

In addition to pasgng the examination all exercises must be gpproved by the teader.

0.4 References

http://computer.howstuff works.com/c.htm — has nice visual demos
http://www.le.acuk/cdtutorials/c/ — good examples
http://www.cprogramming.com/tutorial/c/lessonl.html
http://www.its.strath.ac.uk/courses/c/
http://cplus.about.com/od/beginnerctutorial/l/ bl ctut.htm

http://al pha.uhasselt.be/~gjb/M I T-C/dlides/ — example programs (in dutch)

PRC for E 2

0.5 Table of contents

0. Preface
0.1 Position of this module (PRC for E)
0.2 About the usage of English
0.3 Sructure
04 References
0.5 Table of contents
0.6 Revision history
1. Program
11 What is the C programiring language?
12 What isa programning language anyhow?
13 The dit-compil e-link-exeaite cyde
14 Building
15 Overview of the “ Hello, world!” program
16 Functions
1.7 Rest of this book
2. Intermezzo on input and output

21 Introduction into strings
22 Srings
2.3 Printf
24 Variables
25 Scanf
3. Expressions
31 Introduction
3.2 Types

3.3 Literalsand constants

34 Operators

35 Outside the scope of this course
4. Statements

41 Satements

4.2 If-statement

43 Whileloop

4.4 For loop

4.5 The semicolon

4.6 Outside the scope of this book

5. Datatypes
51 Arrays
5.2 Sructs

53 Combinations
54 Soring standard types
55 Soring astruct
5.6 Outside the scope of this course
6. Functions
6.1 Divide and conquer
6.2 Returning results
6.3 Passng parameters
6.4 Pasdng arrays
6.5 Scope
6.6 Function prototypes
7. Old examiniations
71 Trial for 2005
7.2 Real examination 2005
8. Exercises
8.0 Microsoft Devedoper Sudio
8.1 Exercises for weekl —Program
8.2 Exercises for week2 —Intermezz on input and output
8.3 Exercises for week3 —Expressons
84 Exercises for week4 — Satements
85 Exercises for week5 —Data types
8.6 Exercises for week6 —Functions
9. Mistakes
9.1 Mistakesin C
9.2 Mistakesin Devéoper Sudio

PRC for E

©COOWWOOUUITOAWNNNNN

0.6 Revision history

0.0.1 2005 oct 10 Analysing existing PRC (1¥ meeing) 1h
0.0.2 2005 nov 14 Scoping PRC for E (2" meding) 1h
0.0.3 2005 nov 21+26 | Inventorising existing books (visited bodkshops, internet) 2 hr
0.04 2005 dec 24 Scanning through the websites Lennart de Grad selected. 2hr
0.0.5 2005 dec 28 Written chapter ‘Program’: what is C, what is programming language, edit-comp-link-exec. 2hr
0.0.6 2005 dec 29 Added to chapter ‘Program’: using dev studio, print to screen, exercises for week 1 8 hr
0.0.7 2005 dec 30 Written chapter ‘Expresson’: including exercises. 7h
0.0.8 2005 dec 31 Written chapter ‘ Statements': only theory, except the loagps. 3hr
0.0.9 2006 jan 1 Added to chapter ‘ Statements': loops and exercises. 3hr
0.0.10 | 2006jan 2 Written chapter ‘Datatypes': arrays only theorie. 2hr
0.0.11 | 2006jan 4 Added to chapter ‘Datatypes': structs, exercises. 2hr
0.1 2006 jan 4 Written chapter ‘Functions': theory and exercises. Mailed to Lennart and Agnes for review. 4 hr
0.1.1 2006 jan 29 Studied comments Lennart de Grad on version 0.1 1h
0.1.2 2006 jan 30 Splitoff printf and scanf in new chapter ‘ Intermezzo on input and ouput’ (comments Lennart) 2hr
0.1.3 2006 jan 31 Added storage sizeand hit patterns (comments Lennart de Grad) 3hr
0.14 2006 feb 1 Added struct storage (comments Lennart de Grad) 3hr
0.2 2006 feb 2 Re-all ocated exercises (now that chapters are reorganized), added chapter ‘Preface’, TOCs. 3hr
0.2.1 2006 feb 4 Reviewed the whole document myself. 2hr
0.2.2 2006 feb 5 Reworked my review comments 2hr
0.2.3 2006 feb 5 Reworked comments of Marc Ridders 1h
0.3 2006 feb 5 Reworked review comments of Frans Meulenbroeks and published V0.3 for year 2005-2006 0 hr
0.3.1 2006 dec 14 Reworked comments from last year (ch 0..3), added logg, added buld figure, added program figure 4hr
0.3.2 2006 dec 16 Reworked comments from last year (ch 4..5) 2hr
0.3.3 2006 dec 17 Reworked comments from last year (ch 6..9) added header/body figure, examinations, mistakes 5 hr
0.4 2006 dec 17 Converted to pdf and published as V0.4 for year 2006-2007. 0hr
0.5 2007 dec 31 Small corrections, added string layout, added passing arrays as param 2hr

67 hr

PRC for E 4

1 Program

This chapter explains the origin of the C programming language. It explains what a programming languageis,
what a program is, and that a programmer neals to edit, compile, and link a program before it can be exeauted.
Nea the end of this chapter we discuss the famous C program “Hello, world!”, so that we can start writing
simple programs.

1.1 What is the C programming language?

The C programming language was developed at Bell Labs during the ealy 1970s. Quite unpredictably it derived
from a omputer language named B and from an ealier language BCPL. The ealier versions of C became
known as Bell Labs C or K&R C after the authors of an ealier bodk, "The C Programming Language” by
Kernighanand Ritchie. Asthe language further developed and standardized, a version know as ANS (American
National Standards Institute) C became dominant.

As aprogramming language, C israther like Pascd or Fortran. Values are stored in variables. Programs are
structured by defining functions. Program flow is controlled usingloops, if-statements and function call s. Input
and output can be direded to the terminal or to files. Related data can be stored together in arrays or structures.
Of the threelanguages, C all ows the most predse wntrol of input and output. C is also rather more terse than
Fortran or Pascd. This can result in short efficient programs, where the programmer has made wise use of C's
range of powerful operators. It also al ows the programmer to produce programs which are impossble to
understand. The C language dso offers unparalleled panter computation. Undisciplined use of pointers can lead
to errors which are very hard to trace This course does not ded with pointers (which adually means that a very
important areaof Cis not covered).

C was originally closely coupled to the Unix operating system. One of the pasitive aspeds of knowing C is that
many other computer languages have been derived from it. There is an objed oriented member in the C language
family (C++), the new Microsoft flagship C# is based on it, and even the Sunlanguage Javais heavily inspired
by C's syntax and semantics. So knowing C helpsin starting with many other languages. However, those
languages may differ considerably from C on a conceptual level, so understanding C helps, but it is not afree
ticket.

Although C isrelatively old, it is ill one of the most used programming languages.? For example the Linux
kernel and nealy all todsaround it are written in C. Most embedded systems are writtenin C

1.2 What is a programming language anyhow?

Cisa mmputer programming language. This means that we can use C to crede alist of instructions for a
computer to follow. Cis one of thousands of programming languages currently in use. The word language
suggests letters, words, sentences that follow rulesto be wrred. And indedd, the C programming language, like
all computer languages, is very strict and urforgiving about errors (unlike humon longuoges where we @n
reploceoll 0's by o'swithout losing our reoders, they do get irritoted though ©). The aped of forming corred
“sentences’ is cdled the syntax of alanguage.

#i ncl ude <stdio.h>
int main(i nt argc, char *argv[])
printf("Hello, world\n");

return O;

}

! Unfortunately, many compilers claim to be ANSI compliant but aren't fully or they have spedfic extensions.

2 Maybe, it is even the most popular language (see eg. hitp://www.dedasys.convarticles/language_papularity.html).

PRC for E 5

Above, we seean example of a C program. There is an impressive amount of syntadic details that must be
corred (we can rot leave out any of the charaders” * ; { [(<, # or the program will not work). We will be
learning in this bodk how to write such programs, and we will | earn what they mean. The latter is known as the
semantics of alanguage.

The foll owing Engli sh sentence has ®veal syntax erors: SUGAR arre swed.
Thefollowingis g/ntactically corred (and ha a sensible meaning or semantics): Sugar is aveet.
The followingis g/ntactically corred but its ematics are dubious: Sugar is bitter.

By the way, in addition to the strict syntax in C thereis also a notion of style (“coding conventions’). For
example, al programmers agreethat the lines between { and } should be indented, i.e. started with a couple of
spaces. But thisis a matter of taste, not part of the C syntax. Being taste, the result is that there ae groups of
people fighting over which coding convention is best (should indentation be with 2 or 4 spaces? Where should
the{ be, etc). Don't fight, chose astyle and stick to it.>

C isaso-cdled a compil ed language”. This means that once we write our C program, we must run it througha C
compil er to turn our program into an exeautable that the computer can run (exeaute). The C program is the
human-readable form, whil e the exeautable that comes out of the cmpil er is the machine-readable and
exeautable form (i.e. alist of CPU instructions). What this meansisthat to write and run a C program, we must
have acessto a C compiler.

#i ncl ude <stdio.h>

This is file hello.c
It is a C source code file,
entered by you using an
editor (such as notepad)|

int main(void)

printf("Hello, world\n");
return 0;

}

With a C compiler
(and linker) hello.cis
compiled to hello.exe

DA 50 F3 00 CB 45 20 66 7F 00
3B 26 11 10 OA 2F 30 0C B4 52
64 67 FO 03 B2 63 2D A5 03 F5
30 00 2C B4 52 10 11 61 67 F1
04 08 3E BE 25 61 11 00 A2 F3
00 CB 45 26 46 F4 09 09 3B 26
62 DA 50 36 F5 3C DO 2B 45 2A

This is file hello.exe
It is a list of instructions
(i.e. numbers) for a specif
CPU (such as a pentium)

1.3 The edit-compile-link-execute cycle
Developing a program in a compiled language such as C requires at least four steps:

1. editing (or writing) the program

2. compiling it
3. linkingit

4. exeadting it
1.3.1 Editing

We write a @mputer program with words and symbols that are understandable to human beings. Thisisthe
editing part of the development cycle. We type the program diredly into a window on the screen and save the
resulting text as a separate file. Thisis often referred to as the sourcefile (we aan real it with the type command
in aDOS box or the cat command in Unix). The austom isthat the text of a C program is gored in afile with
the extension .c.

3 The author uses the “Phili ps Consumer Eledronics coding conventions’ because that's engraved in his mind.
* Another big classof languages are the interpreted languages (e.g. JavaScript on web pages).

® Where DOS box is mentioned, we not only mean comnandcom but also the @mmand interpreter cmd.exethat
comes with Windows NT/XP.

PRC for E 6

1.3.2 Compiling

We canot diredly execute the sourcefile. To runon a computer system, the source file must be trandlated into
“binary numbers’ (instructions) understandable to the mmputer's CPU® (Central Processng Unit, for example,
the 80x86 microprocessor). This processproduces an intermediate objed file — with the extension .obj or .o
(which stands for objed fil €).

1.3.3 Linking

Thefirst question that comes to most peoples minds is Why is linking necessary? The answer to thisis that most
programs are assembled from multiple source fil es each implementing parts of the resulting applicaion. These
parts need to be “linked” together.

Quite often, there is a set of stable parts implemented in several sourcefiles. These sourcefiles are compiled
once and padkaged together in aso cdled library (thereisno magic in alibrary; it is much like Zpping several
.obj filesinto one .lib file). A normal way of working isto compile our .c filesinto .obj filesand link those,
together with the .obj filesin (one or more) .lib files.

When we think this complex structure is only appli cable for large gplications, and not for our simple hell o-
program, we' re unfortunately wrong. The reason is that many compil ed languages come with standard library
routines. Theses routines are written by the manufadurer of the compiler to perform avariety of tasks, from
input/output to compli cated mathematicd functions (for example, most CPUs don't have an instruction to doa
sin —sinus of an angle — rather the compiler adds a routine that computes the sinus using multipli cation, addition
etc). In the cae of C the standard output function (the printf to put text on the screen) is contained in alibrary
(stdio) so even the most basic program will require alibrary function and hence alinking step.

After linking the fil e extension is .exe(which stands for exeautable fil s). On unix, executables usually dorit
have an extension, and in embedded systems the resulting executable wuld be a.hexfile (an adual memory

image)’.
D D
pat.c i | [0
D D
parc parzoti | [T
link prog.exe

helpl.obj

L=
help2.0bj

help.lib

1.3.4 Executing

Thusthe text editor produces .c sourcefiles, which go to the compil er, which produces .obj objed files, which
go to the linker, which produces an .exeexeautable file. We can then run the .exefile as we can run any other
application: simply by typing their namesin the DOS box or by using a double-click in Windows Explorer.
Note, that an .exefileis not only alist of instructions for the CPU; it usually starts with a header which instructs
the loader of the operating system where and how to load the instructions (e.g. relocatable segments, dil's).

® This also means that when you want to run your C program on another CPU, you have to use another C
compil er. In padice you quite often also have to addapt your sourcefiles (“porting”).

" For example, the Keil compil er for the 8051 CPU (used in LLP) generates hex fil es.

PRC for E 7

1.4 Building

The term building is used for compiling and linking together. Compil ers and linkers are dways delivered
together, and most compilers also link. Or should we say that thereisasmall third program that adually first
starts the compil er and then the linker? Very confusingly the term C-compiler is also used for the compiler and
linker together.

That's why it sufficesto type

gcc partl.c part2.c - 0 myapplication.exe
in Unix.

There ae many C compilers under Windows, including gcc. On windows, alikely candidate is the Microsoft C
compil er integrated with Microsofts Developer Studio. Developer Studio is a so-cdled IDE or integrated
development environment. This means that the whole edit-compil e-link-execute cycle takes placewithin one
environment. This environment not only guides the compil e and link phases, but it even includes an editor and an
environment for exeating the compil ed applicaion. The latter is very convenient for debugging; running a
program under “supervision” with the amto find errors (or “bugs’ asthey are commonly referred to).

Seethe exercises for an introduction in using Microsoft Developer Studio.

1.5 Overview of the “Hello, world!” program
Let us gart with the famous “Hell o, world!” program that every bodk on C starts with.

#i ncl ude <stdio.h>
int main(void)

printf("Hello, world'\n");
return O

}

Let'swalk through this program to seewhat the different lines are doing. Of course the red detail s follow in later
chapters.

The“Hello, world!” program starts with #include <stdio.h>. This line includes the “standard 1/O library”® into

our program. The standard 1/0O library lets us read input from the keyboard (cdl ed “ standard in™), write output to
the screen (cdl ed “standard out™), processtext files gored on the disk, and so on. It isan extremely useful
library. C has alarge number of standard libraries like stdio, including libraries to manipulate date and time,
meth libraries, string libraries. A library is simply a padage of code that someone dse has written to make our
life eaier, in this case the stdio library comes with the compil er.

Thelineint main(void) dedares the main function®. Every C program must have exadly one function named
main somewhere in the amde. At runtime, that is, when the program is executing, execution starts at the first line
of the main function.'® Typicaly, C programs contain many functions in addition to main. In one of the last
chapters of thisbodk we learn how to write functions ourselves.

InC, the{ and } symbals mark the beginning and end of a block of code. A block of code mntains sveral
statements. In this case, the block of code makes up the so-cdled body of the main function. It contains only two
statements (printf and return).

Thefirst statement, printf , sends output to standard out (e.g. the screen). The portion in quotesis cdled a string
(aseries of charaders). For printf, the string describes the data to be printed. The string contains literal
characterssuchas'H’, ‘€', ‘I', etc. It may also contain escape characters, for example cariage returns (\n).

The main function must return a number (an int or integer) to its cdler (the operating systems loader) to signal
succesful (or erroneous) termination. Thisis arequirement from ANSI C, and can be seen from the header: int

8 Actually, it doesn’t include the library itself, but the header file describing the library.

® According to the ANSI C spedfication thereis only one dternative: int main(int argc, char *argv(]).
Unfortunately, many compilers allow many other aternatives like int main(). Don't use these if you care for
portable ade or standards.

1 That is, after the loader of the operating system has loaded the executable, it call s the main function.

PRC for E 8

main(void). Thelast line: return O; causes the function to return, passng an code of O (no error) to the operating
system.

By the way, the C compil er is rather indifferent about whitespace (not to be mnfused with syntax for which it is
very picky). Whitespaceis the cmmputer-scienceterm for layout (spaces, tabs, new lines), so the &ove program
could also berendered as:

i ncl ude <stdio.h>
int

main(
voi d) { printf
("Hello, world!\n")
;return 0
B

but we wouldn't have many friends. On the contrary, source @de should foll ow strict coding conventions to
enhance readabili ty, and comments sould be added where needed. The old syntax for commentsisto put them
between /* and */ but the latest ANSI C also all ows comments from // till the end of the line.

#i ncl ude <stdio.h>

/I Itis good practice to start every function with an explication of what it does.
int main(void)

printf("Hello, world'\n");
return /* This comment is placed very strangly, but syntacticly ok */ 0;

}

1.6 Functions

Functions are one of the most important conceptsin many programming languages, and C is no exception to this
rule. Even in the simple program discussed in this chapter, there ae dready two functions! The first we
encountered was main. Every C program must have amain; it defines which statements to execute upon startup
of the program.

The seaond function was a bit hidden. But the first statement of main isadually a call to the function with the
name printf. The function printf is defined (its body isimplemented) in the standard I/O library (that’s why we
need the #include on the first line).

We can recognize afunction definition fromitsbody in braces{ } :

...bla... SomeFuncti onNane(... bla...)
{

some statements

and we reagnize afunction call from its adual argumentsin parenthesis ():

SomeFunctionName (...arguments...);

Functions define aseries of statementsto perform. A function groups these statements and gives them a name
(the function name). One culd say that functions are like black-boxes that can perform some trick. Thetrick is
performed by calli ng the function.

Thefirst line of the definition (...bla... SaneFunctionName(...bla...)) defines the interface or header of the
function: its name, what goesin and what comes out.

A well known example of afunction availablein C isthe sin function. It has ©me dever (mathematicd) trick to
compute the sinus of a number. It is defined once (in the math library), and ead time we ned it, we simply cdl
it. For this we need to know its name (sin) and that a number goesin (sin(3.14)) and anumber comes out (“is
returned”): 0.001592652. Usually, the C compil er comes with manuals (Unix: manpages; Windows: help files—
F1) that explain al functionsin &l libraries that come with the compiler.

We may write our own functions. We will seehow to dothat in Chapter 6.

PRC for E 9

1.7 Rest of this book

This chapter gave aoutside-in overview of what a program in C looks like. The rest of this bodk will give an
inside-out detaling of C. We start with the small est items: expressons, which are used in bigger expressions,

which are used in statements, which are used in bigger statements, which are used in functions, which are used in

programs.

The figure below shows a program with its nested items.

PRC for E

| int func(inta) |
I { I
: int x :
I b<: 350 0) ‘|
|| if(X=F0)0 :
Iy

k@ O ||
I I
I I
I I
I I
I I

| returni;) |

}
| return(®a) |

l'i nt main(void)

|
i

|

| |scanf("%d", &a):(O |
: | returnfunc(a))) |
|

|
|
|
int a |
|
|
|
|

r—a

L]
(G

function
statement

expression

1C

2 Intermezzo on input and output

In order to be aleto do some pradicd work, it isvery convenient to know how to put charaders on the screen.
We've seen that printf takes care of this, but we need to understand a bit more eout printf before we can
effectively useit in our programs. To make our programs even more dtradive; we'll have alook at scanf, which
allows usto input somethinginto our program from the keyboard.

Before we start with printf, we introduce strings; before we touch on scanf, we introduce variables.

2.1 Introduction into strings

Aswe will seelater, the C programming language knows about different kinds of values (thisis commonly
referred to as types). The two most prominent ones are numbers and strings. We have seen examples of both.
The statement

return O;

contains the number (to be more predse, the integer) 0, and the statement

printf("Hello, world'\n");
contains the string "Hell o, world'\n".

The notion of astring of charadersis common in nealy all programming languages, but its notation is not
trivial. The author of this bodk onceworked on a university, which had a‘no bike parking sign nea the
entrancereading:

“no bike parking”

Note the quotes, which were redly present — presumably the guy ordering the signwrote aletter saying:
Please make asign with the text “no bike parking”.

It makes ®nse to have quotes to separate the text of the letter from the text of the sign, because otherwise the
foll owing letter gives an ambigous order to the sign manufadurer:
Please make asign with the text no bike parking before 12am.

Which one would it be:
Please make asign with the text “no bike parking” before 12am.
Please make asign with the text “no bike parking before 12am”.

On the other hand, it is not enough to agreethat al quotes should be stripped, becaise then it would be
impossbleto order asign with

no “wrecks” please

2.2 Strings

A string is a sequence of charadersenclosed in " (double quotes). The C compil er stores al charaders of the
string (but not the enclosing quotes), and it always appends a0 (null) for technical reasons beyond the scope of
thisbodk. So,

» "APE" isastring consisting of 3 charaders'A’, 'P, and 'E'

[Al[P][E]pull

that is, ascii codes 65, 80, and 69

[65][80][69][0]

PRC for E 11

e "mary" isastring consisting of 4 charaders.
[m][al[r][y]fnul
« "Hesad'hi'." consistsof H, e, space s, a, i, d, space singe quote, h, i, single quote, dat.

[H][e]lspacd[s][al[i][dispacd] ['][h][i]["][.] fouil

But suppose we want to have

He said
--hi

on the screen on two lines. How would we do that? Unfortunately, C does not all ow alinefeed embedded within
astring:

printf("He said
--hi");

Thereisthis convention that ascii code 10 causes alinefead. And C has the notion of escape sequencesto embed
those “unprintable” charadersin a string. Thisis done by using the escgpe charader \ foll owed by x (for
hexadedmal) foll owed by hexadedmal digits. So

printf("He said \ XOA- - hi");

doesthe job. It maps to the foll owing sequencein memory

[H][e]lspacd[s][al[i][d] linefead [-] -][] [i] nuil]

or, when using ASCII notation

[72][101][32][115][97][105] [100] [10][45] [45][104][105][0]

It goes without saying that

printf("\x41\x42\x43");

prints

ABC
sincehex 41isthe ascii codefor A (and 42isB and 43isC).

However, since alinefeed is © popular, and \XOA so unrealable there is another shorthand: \n (n for newline).
We have drealy seen \n in the hello world example. This means that

printf("He said \ n- - hi");
also deesthe job.

The table below lists other popular shorthands

\\ to embed a backslash in a string (an escaped backslash)

\" to embed a double quote in a string

\' to embed a single quote in a string (or in a character, see next chapter)
\b to embed a backspace in a string

\n to embed a linefeed in a string

\t to embed a tab in a string

\0 to embed a null character in a string (don’t do this!)

\x nn to embed hexadecimal character nn in the string

Recdl that these escape sequences are part of the syntax of the C programming language; they have nothing to
dowith printf.

2.3 Printf

Thejob d printf isto put charaders on the screen (adually, to standard-out). When cdling printf, we must pass
at least one string, the so-cdled format string. The format string holds a“template” of what to print.

Let'slook at some variations to understand printf better. Hereisthe simplest printf statement:

printf("Hello");

PRC for E 12

Thiscdl to printf hasaformat stringthat tells printf to send the string "Hello" (that is, the charadersH, el, I,
and o) to standard out. Contrast it with this:

printf("Hello\n");

The second version sends the string "Hello\n", that isH, e, |, |, 0 and alinefeal (ascii 10) to standard out.

printf("H\ne\nl\nl\no\n");
Prints Hello “verticdly”.

o——oT

The foll owing line shows how to output an integer using printf.

printf("%d", 10);

The %d is aplacéholder (for integersto be printed dedmal) that will be replaced by 10 when the printf statement
is executed. Of course it would be more logicd to say

printf("10");

but we can also say

printf("%d", 5*(100-32)/9);
Often, we will want to embed the cdculated number within some other words. One way to acaomplish that is
like this:

printf("The temperature is ");
printf("%d", 5¥(100-32)/9);
printf(" degrees celsius\n");

An easier way isto say this:

printf("The temperature is %d degrees celsius\n", 5%(100-32)/9);
We can also use multiple %d placenoldersin one printf statement:

printf("Note: %d degrees fahrenheit is %d degrees celsius.\n", 100, 5*(100-32)/9);
This prints

Note: 100 degrees fahrenheit is 37 degrees celsius.

It is now hopefully clear why the format stringis atemplate, it is after al, a string with %d holesin it that still
needsto befill ed out.

In addition to %d for deamal printing we can also use %x for hexadedmal printing (or %X for uppercase
hexadedmal). Thereis also %c for charader printing (treding the number as an ascii value). Thus

printf("[%d,%x,%X,%c]", 75, 75, 75, 75);

prints

[75,4b,4B K]

The %f isfor printing floating point numbers, and there is also a placénolder for string (%s):

printf("He said '%s' and %fl\n", "Hi", 2.5);

which prints

He said 'Hi' and 2.500000!

Thisis ometimes handy becaise there ae several extratricks with printf, for example padding.

PRC for E 13

printf("A123456789\nB 9%s\nC %6d\n", "ape”, 54);

pads the goe string with spaces until it is5 charaderslong and the 54 integer with spaces until it is 6 long:

A123456789
B ape
C 54

For more detail son printf trickslook in the developer studio help file or internet.

In the printf statement, it is extremely important that the number of placéoldersin the format string
corresponds exadly with the number and type of the values foll owingit. For example, if the format string
contains three %d operators, then it must be foll owed by exactly threeintegers.

Faili ng to doso might crash the program.

We have seen that the C language uses the \ as escgpe dharader in strings (in order to get some spedal charaders
embedded in a string). In order to embed the string escape charader \ itself in astring it needsto be escgped: \\.
Similarly the printf routine has chosen to use the % as escgpe charader in format strings (in order to get holes
embedded in the format string). In order to embed the format string escape charader % itself in aformat string it
needs to be escaped: %%. So

printf("There is a reduction of %d%%.\n", 25);

which prints

There is a reduction of 25%.

2.4 Variables

Asaprogrammer, we will frequently want our program to "remember" values (for later use). For example, if our
program requests a value from the user, or if it cdculates avalue, we will want to remember it somewhere so we
can useit later. The way our program remembersthingsis by using variables. For example:

int b;
Thisline says“| want to creae some room cdled b that is able to hold one integer number”. A variable has a
name (in this case b) and a data type or type for short (in this case int, an integer). We can store avaluein b by
saying something like:

b=5;
We can use the valuein b by saying something like:

printf("%d", b);

But we @n also use b in an expression:

printf("The square of %d is %d", b, b*b);

Or, when there isa second integer variable a, we can asggn variable a a value using an expresson in which
variable b occurs:

a= 2*(b+1)
When bis5, (b+1) equals 6, so 2*(b+1) equals 12. Asaresult, variableais %t to 12 ty this assignment.

Let usnow look at a program that shows variablesin adion

PRC for E 14

#i ncl ude <stdio.h>

int main(void)
.
int a
int b;
int c
a=>5;
b=7;
c=a+hb;
printf("%d + %d = %d\n", a, b, ¢);
return O;

}

Thefirst threelines of the main function dedare threeinteger variables named a, b and c. The next two lines
initialize the variable named a to thevalue5and bto 7.

The next line alds a and b and assgns the result to ¢. What happensis that the cmputer adds the valuein a (5)
to thevaluein b (7) to form the result 12, and then places that new value (12) into the variable c. We say: the
variable c isasdgned the value 12. For thisreason, the = in thislineis cdled the assgnment operator. It is
pronounced as “becomes’ asin “c becomesa plusb” (don’t say “is” asin “cisaplusb”).

The printf statement then printstheline5 + 7 = 12 The %d-sin the printf statement ad as placénolders for
values. There aethree%d placeholders, and at the end of the printf line there ae the threevariable names: a, b
and c. Printf matches up the first %d with a and substitutes 5 there. It matches the second %d with b and
substitutes 7. It matches the third %d with ¢ and substitutes 12. Then it printsthe complete lineto the screen: 5 +
7 =12. The +, the = and the spadng are apart of the format line and get embedded automaticaly between the
%d operators as pedfied by the programmer.

Asan dternative, we could save variable c and dothe cdculation in printf:

#i ncl ude <stdio.h>

int main(void)
.
int a
int b;
a=>5;
b=7;
printf("%d + %d = %d\n", a, b, a+b);
return O;

}
We wrap up this chapter with some rules on variables.

Before avariable can be used in afunction, it must be dedared. Dedaration of avariablesin a function* must
occur asthe first lines'?.

int main(void)

int a; // Declaration
a=5; |/l Statement
float b;// Declaration error: can not have a declaration after a statement

A dedaration consists of atype™® followed by a variable name. Variable names must start with alower- or
uppercase letter (or underscore) and may be followed by any number of lower- or uppercase letters, digits or
underscore. A variable name may not be aC keyword. These ae goodvaribale names: ape, Nut, i, Tax2005,
shoa2kill, printf, main, number_of columns. These aeill egal as variable name: 2005Tax (can not start with
number), shoa 2 kill (can not have spaces), for (isa C keyword). Variables names are cae sensitive so ape and
Ape are different variable names.

It isallowed to add an initializer to adedaration:

1t isalso passble to dedare variables outside a function; then the variable can be used by all functions. Such a
variableis cdled aglobd variable. Global variables are considered bad style, but sometimes they are necessary.

12 The C++ language, which is an extension of C, does all ow a dedaration anywhere in a block of code.

13 Aswe will seelater, not just atype but atype eyresson.

PRC for E 15

int a=1;
int b=a+a;

It isallowed to group the dedaration of several variables of the same type (but some consider it bad style
because it mixes badly with type expressons and initiali zers):

int ab,c;

2.5 Scanf

Until now, our programs could only perform output. Let’s now delve into datainput. The stdio library hasa
function scanf — the input counterpart of printf.

The scanf function alows usto accet input from standard-in, which for usis generally the keyboard. The scanf
function can do alot of different things, but it is generally unreliable unlessused in the simplest ways. It is
unreli able because it does not handle human errors very well . But for simple programsit is good enough and
easy-to-use.

The simplest appli cation of scanf looks like this:

scanf("%d", &i);

The program will read an integer value that the user enters on the keyboard (%d isfor integers, asit isin printf,
so i must be dedared as an int) and placethat value into variablei.

The scanf function uses the same placéholders as printf:
e int uses%d

» float uses %f

* char uses%c

e charader strings (not discussed) use %s

We must put & in front of the variable used in scanf. The reason for thisis pointers' (which is outside the scope
of thisbodk). It is essy to forget the & sign, and when we forget it, our program will almost always crash when
werun it.

In general, it isbest to use scanf as siown here —to read asingle value from the keyboard. Use multiple cdlsto
scanf to read multiple values. In any red program, we would use the gets or fgets functionsinstead to read text a
line & atime. Then we will “parse” the line to real its values. With this approach we @n deted errorsin the
input (entering 5oinstead of 50) and handle them as we seefit. But thisis beyond the scope of this bodk.

But in other words, never do

scanf("%d %d", &, &); /I WRONG

The printf and scanf functionswill take abit of pradiceto be completely understood, but once mastered they
are extremely useful.

The fragment below shows a simple cdculator, well, extremely inconvenient adder is a better description.

14 A scanf(“ %d” i) cal will make scanf read an integer (that’s what the first argument “ %d” tellsit to do) and
store that at a memory location spedfied by the second argument. If variablei happens to have the value, say, O,
the read integer will be stored at location 0. Thisis most likely wrong. Instead, we would like the read integer to
be stored at the location reserved for variablei. Supposethat i islocaed at address0400, then scanf should have
been gven the aldress0400as mnd argument. The C compiler has atrick for this: &i returnsthe addressof i,
that would be 0400in this example. So scanf(“ %d” ,&i) does the trick.

PRC for E 16

#i ncl ude <stdio.h>

int main(void)
.
int a;
int b;
int c
printf("Enter the first value:");
scanf("%d", &a);
printf("Enter the second value:");
scanf("%d", &b);
c=a+hb;
printf("%d + %d = %d\n", a, b, c);
return O;

PRC for E

17

3 Expressions

C programs consist of functions (explained in chapter 6) which consist of statements (explained in chapter 4)
most of which contain expressions. Expresgons denote cmputations, the adivity that gave computerstheir
name. Expresgons are explained in this chapter.

3.1 Introduction

C isaprogramming language, for programming a cmputer, and computers compute. The formal word for a
single ommputation redpe like 2+5 or 2*(b+1) is expresson. Expressons compute to avalue: 2+5 computesto 7
and 2*(b+ 1) computesto 12in case b equals 5 (since2 times 6 (5 plus 1) equals 12).

Let us examine that last expresson. Assuming we have avariable b we @an form an expression using b:

2*(b+1)

The* and + are cdled operators. These two happen to be binary operators becaise they have two operands (the
+ hasband 1, the* has2 and (b+1)). In C, there ae dso unary operators (like - in -x) and thereiseven a
ternary operator.

The operands of an expression are a@ther numbers (officialy: literals), variables, function cdls or sub-
expresgons. The foll owing expresson shows them all:

1+a+cos(l) + (3*5)

It should be noted that each expression has a so-call ed type, that subtly changes the meaning of an expression.
For example, 7 and 7.0 bah represent the number seven. But the former is an integer and the latter is afloating
point. Thisresultsin adifferent meaning for / the divide operator:

7 12 1 computes to integer 3
7.0/2 1 computes to float 3.5

In the former expression, we divide two integers, resulting in an integer result, hencethe 3 instead of 3.5.

When using variables, we have to make the type explicit. The C language has sveral standard types for
variables. To name afew:

 int integer (whole number) values (such as 3, 5721, or -55).
o float floating point values (such as 1.0, -1.5, 3.1415926535, or —2.11E+17).
e char single charader values (such as'a, 'Z', '3 or '+').

Before we stop with thisintroduction, let’s have alook at asimple expression that sometimes bewil ders novices.
It isin the commented line in the program below:

#i ncl ude <stdio.h>

int main(void)
.
int x
X=5;
printf("x=%d\n", x);
X= X+1; /I increment variable x by one
printf("x=%d\n", x);
return O

}
This prints

PRC for E 18

X=5
x=6
Recdling the alviceon pronunciation, the commented line reads “x becomes x plus 1”. And x was 5 so it

becomes 5+1 that is, 6. Incrementing a variable by one occurs o dften that C has a shorthand notation for it:

x+=1 or even x++ (both are explained in a sedion below).

3.2 Types

The C programming language cmes with integer numbers and floating pont numbers and it knows about
charaders (but barely).

3.2.1 Integers

The typeint stores integer numberslike 0, 1, 2, 3, but also -1, -2, -3. One of the problemsin C (and many other
languages for that matter) is the question: What is the biggest (and small est) number fitting in an int? The ANSI
spedfication leavesthislargely to the C compil er. It does gedfy that an int should be stored in at least 16 hts.
So, on every CPU and every compiler, all numbers in the range -32768.32767 fit into an int. On a modern™ PC
(and amodern compiler) anint is 32 bts (-214783648..2147483647), but the Keil compil er we use for the 8051
CPU in LLP will have 16 btsint’s.

The C programming language has the modifiers short and longthat modify the number of bits used for int.

short int a

int b;
long int ¢
short d; /l same as short int
| ong e; /l same as long int

ANSI not only spedfiesthat intisaleast 16 Htswide, it also spedfiesthat short has a sizesmaller or equal than
that of int and that longhas asize greaer or equal than that of int. Thisisredly a pain when writing a program
that must run on multiple CPUs. As arule of thumb:

short int long
PC (pentium and higger) 16 32 32
8051 16 16 32

All of the ebove ae signed integral numbers. There aetwo ather modifiers: unsigned and the superfluous
signed.

unsi gned int a;
int b; 1/ is signed
signed int c; /I same as int

unsi gned short int doO;

short unsigned int di;// same as unsigned short int
unsi gned short dz; // same as unsigned short int
short unsi gned ds; // same as unsigned short int
/I similar 4 cases for long

The signed and unsigned modifiers do not change the size of the variable (so if anint is 16 hts, asigned int and
anunsigned int are dso 16bits).

In chapter 5 we discuss in more depth how integers are adually stored (size, bit patterns, signed and ursigned).

3.2.2 Floating point numbers

The type float stores floating point numberslike 0, 1.5e-30, 1.5, 15.0, 150.0, 1.5e+30 and their negative
counterparts. Next to float, there is doule and long double. Typicdly, these use the 4 respedively 8 and 10 lyte
(32, 64 and 80 hits) representation of the IEEE 754 standard discussed in [CM.

float f=-3.14e+20;

5 A word like “modern” is of course dangerous. We ae talking standard computers around 2000(plus or minus
10yeas?).

PRC for E 19

In chapter 5 we discuss in more depth how float’ s are stored.

3.2.3 Characters

The C programming language dso fedures the type char. Thistype stores charaderslike 'A’, 'B', 'C, ..., '0, 'L,
2,3, ..., a, b e L = L, but dlso ', L VY LLL L Note that achar isasingle charader enclosed in
single quotes (as oppased to astring, which is a series of charaders enclosed in double quotes).

The funny asped isthat charadersin C are at¢ually numbers. So the type char storesinteger numbers, and ‘A’ is
afunny way of writing 65 (the ascii value of A). So the aode below is perfedly legal C:

int i

char c;

c="A,

i=c+2;

printf("i=%c i=%d c=%c c=%d", i, i, ¢, c);

and this prints

i=C i=67 c=A c=65

On most CPU’s char isabyte (8 hits). This makesit avery often used datatypein low level software that
communicaes bytes with hardware. Unfortunately ANSI C does not spedfy whether char is sgned or unsigned,
s0if it mattersto us, we must add these modifiers. For example, when using the Keil compiler with the 8051
CPU in LLP, we often see

unsi gned char portvalue;

3.2.4 Strings

Charaders have one spedal feature in the C language: there is a spedal notation for a series of charaders, the so-
cdled strings. This has aready been introduced in the previous chapter. Since pointers are outside the scope of
thisbodk, and a string is also a pointer to a series of charaders, thisbodk will largely ignore strings (we will

only useit in printf).

Keep in mind that
 "A"isadgtringof length1and 'A'isa cdarader;

» "AB"isadtring of two charaders and 'AB' is a syntax error becaise single quotes must enclose asingle
charader;

e "\n"isasdtring of length 1 (with the linefeed charader) and '\n' isa single charader;

. isan empty string and ' ' a syntax error because single quotes must enclose asingle charader.

3.2.5 Void

We have seen another type in the examples: void.*® Thistype can not hold any kind of value. It is mainly used in
functions to spedfy that the function computes nothing, asin void f(int x), or that a functon has no arguments, as
inint main(void).

Void is also used extensively with pointers, which are not covered in thisbodk.

3.3 Literals and constants

A C program will typicdly feaure literals (sometimes referred to as constants, but that’s less predse) of the
different types. We have seen several examples alrealy, but there ae some new ones:

« 0,1,23,-1,-2,-3for integra types
- 'AV'B,'C,'0,'1,'2,'3,'@a, b, 'c, "+, = ¢ "\, Y, VT also for integral types (but typicdly char)
* 0x0, 0x9, OxA, 0xB, OxAA, OxF3F8, 0xffff also for integral types (hexadedmal)

18\ 0id means empty (legg in Dutch).

PRC for E 20

0, 15e30, 15, 15.0,150.0, 1.5e+30, -1.5E30 for floating point types
o MM " "Apenut mary”, "He said \"Hey, it's my bodk!\"\n" for string types.

Most programmers agreethat it is ok to have literalslike 0 and 1in our code. But when there is a fragment like

f=e*2.20371;

most programmers will frown on us and ask “what is this magic constant”. In such a case, give the magic
constant a name (making it lessmagic) by converting it into an explicit constant.

#def i ne GuildersPerEuro 2.20371

int main(void)

{
f; e * GuildersPerEuro;

-
Observe that there is no semicolon at the end of the #define line.!’

3.4 Operators

A literal isavery simple expression. So isa cnstant or avariable. These ae adually the basis for more complex
expressons. More complex expressions are formed by applying an operator to one or more lesscomplex
expressons.

For example

3.95
GuildersPerEuro
e

f

might be afloating point literal, a cnstant respedively avariable and a variable and as such (basic) floating
point expressons. These can be combined using operatorsinto more cmplex floating point expressons.

e * GuildersPerEuro
3.95+f

And these can be mmbined (using operators) into a yet more complex floating point expression.

(e * GuildersPerEuro) - (3.95 +f)

The*, + and —are examples of operators. This ®dion introduces svera of C's operators.

3.4.1 Arithmetic operators
The arithmetic operators are the ones typicaly taught at school.

printf("%d", 14+4); // addi tion prints 18
printf("%d", 14-4); // subtraction prints 10
printf("%d", 14*4); I/ mul tiplication prints 56
printf("%d", 14/4); I/ (integer) division prints3
printf("%d", 14%4); // remai nder (nodul o) prints 2
printf("%d", -4);// negati on prints -4

Note that - is not only a binary operator (14-4) but also a unary operator (-4).

As 0n as both operands of / are integer, the operator performs an integer division (pronounced as “div”). So
14/4 equals 3, but 14.0/4.0, 14.0/4 and 14/4.0 al equal 3.5 (one operand is float, so the division becmes a float
division). In case of an integer division, the remainder islost. There is a spedal operator % (pronounced as
“mod") to compute the remainder: 14%4 equals 2 because 4 times 14/4 (that is, 4 times 3) equals 12 so we have
aremainder of 2 (14-12).

"Many C coding conventions suggest to use dl capitals for constants: GUILDERSPEREURO, which is quite
unreadable, so that often urderscores get added GUILDERS PER_EURO.

PRC for E 21

These operators are goplicableto integral types (including char) and floating types (except %). It isnot posshle
to add (concaenate or glue together) stringsin C with +.

3.4.2 Relational operators

The C programming language does not have aseparate data type for true and false. In many other languages this
typeis known as Boal or Boolean. C simply usesint instead and the values 1 and O for true respedively false.
With this knowledge the outcome of the following relationd operators should be dea.

printf("%d", 5<3); // | ess than prints 0 (false)
printf("%d", 5<=3); // | ess or equal prints O (false)
printf("%d", 5==3); // equal prints 0 (false)
printf("%d", 5>=3); // greater or equal prints 1 (true)
printf("%d", 5>3); // greater than prints 1 (true)
printf("%d", 5!=3); // unequal prints 1 (true)

Observe that equality is denoted with = = (where most other languages use asingle =) and inequality is denoted
with != (where several other languages use < >).

These operators are gplicableto integral types (including char) and floating types. It is not possble to compare
strings using these operators.

3.4.3 Logical operator

The C programming language might not have aseparate datatype for Booleans, it does have operators for them,
the so cdled logical operators. However, sinceint is used for Booleans, adedsion had to be made on what the
meaning is of any value other than 0 or 1. ANSI dedded that any value other than 0 means true. Knowing this,
the foll owing should be dea.

printf("%d", 1&&1); // | ogi cal and prints 1 (true)

printf("%d", 1&&0); // | ogi cal and prints O (false)

printf("%d", 0&&0); // | ogi cal and prints O (false)

printf("%d", 5&&3); // | ogi cal and prints 1 (true) 5 and 3 are both seen as true
printf("%d", 1||1); // | ogi cal or prints 1 (true)

printf("%d", 1]|0); // | ogi cal or prints 1 (true)

printf("%d", 0]|0); // | ogi cal or prints 0 (false)

printf("%d", 5|3); // | ogi cal or prints 1 (true) 5 and 3 are both seen as true
printf("%d", 0]|3); // | ogi cal or prints 1 (true) 3 is seen as true

printf("%d", 10); // | ogi cal not prints 1 (true)

printf("%d", 11); // I ogi cal not prints O (false)

printf("%d", 13); // I ogi cal not prints O (false) 3 is seen as true

Notethat ! isan example of aunary operator.

“Normally”, logicd operators are used to asemble relationd sub-expressions, as in the foll owing examples:

(0<=x) && (x<10)
(x<0) || (x>=10)
I(x==0)

3.4.4 Bitwise operators

The ALU of most CPUs is cgpable of bitwise manipulation. The C programming language has operators for
them. The foll owing bitwise operators are only applicéble to integral types (including char). Recdl that 5is
binary 101and 3isbinary 11.

printf("%d", 5&3); // bitw se and prints 1 (0000000000000001)
printf("%d", 5|3); // bitwi se or prints 7 (0000000000000111)
printf("%d", 53); // bi t wi se xor prints 6 (0000000000000110)
printf("%d", ~3); // 1-conpl enent prints -4 (1111111111111100)
printf("%d", 5<<3); // upshi ft prints 40 (0000000000101000) 000 shifted in
printf("%d", 5>>2); // downshi ft prints 1 (0000000000000001) 01 shifted out

The aconym xor means ‘exclusive or’. Also recdl that 1-complement is a bit-flip (officially known asinverse).

The result of the bitwise operators depends onthe size of the int (in the example &ove 16 htsis assumed).

PRC for E 22

The upshift always shiftsin 0. The downshift shiftsin O for unsigned integral types. For a negative signed integer
it might shift inal but also a0, thisisvery inconveniently left unspedfied by ANSI. If we shift as many bits or
more & the size of the (left) operand, the behavior of the shift is also unspedfied.

Note that ~ is an example of aunary operator.

Do not confuse || (logicd or) with | (bitwise or):

printf("%d", 5|3); // | ogi cal xor prints 1 (true; 5 and 3 are both seen as true)
printf("%d", 5 |3); // bitw se or prints 7 (bitwise or of 0101 and 0011 is 0111)

3.4.5 Operators with side-effects — part 1

Thereis one dassof operatorsin C which should be used wisely. These ae operators that not only use the value
of its operand, but actually change the operand. Of course, thisisonly possbleif the operand isavariable. This
probably sounds very cryptic. Let’slook at an example.

As noted ealier, one of the most common thingsin Cisincrementing a variable by one. Thisis 5 common, that
thereis ashort hand for that:

int i=3;

printf("%d\n",i);

i++; 1/ here is the increment-by-one shorthand
printf("%d\n",i);

This prints

3
4

Thetrick isthat i++ not only incrementsi by one but also has avaue, namely the old value of i. So, inCitis
perfedly legal to write

int i=3;

int j=0;

printf("i=%d j=%d\n" i,j);

=5 *i++

printf("i=%d j=%d\n",i,j);

This prints

0
1

3]
4j=15

Aswe see i isincremented by one (from 3to 4) and j is %t to the 5 times the old value of i (3).

In additi on to the post-increment (i++) there is also a pre-increment operator (++i). The expresson ++ i
incrementsi by one ad has as value the new value of i. So,

int i=3;

int j=0;

printf("i=%d j=%d\n",ij);

j=5* ++i; // changed from post- to pre-incement
printf("i=%d j=%d\n",ij);

This prints

0]
2

3]
4 =20
Aswe see i isincremented by one (from 3to 4) and j is %t to the 5 times the new value of i (4).

In addition, there ae dso pre- and past-deaement operators (- -i and i- -). They deaement their operand and
have as val ue the new respedively old value of the operand.

We should use these operators aringly. It's best to only use ++ and - - in isolation.

PRC for E 23

3.4.6 Operators with side-effects — part 2

It gets worse. There ae several other operators with side dfeds: =, +=, -=, *= etc. These assgnment operator
asdgn, add, substrad, respedively multi ply the variable on the left with the value on the right as a side-effect,
but also have the outcome & value. So

int i=3;

int j=2;

= 4%,

printf("i=%d j=%d\n",ij);

prints
i=11j=2
and
int i=3;
int j=2;
j= (i+= 4%);
printf("i=%d j=%d\n",i,j);
prints
i=11j=11
sincei+=4*j not only setsi to 11 it hasavalue of 11, whichisassigned toj.
In isolation the assignment-operators make sense, but not when cascaded®. The only sensible gplication of
cascading probably is
i=j=0
which setsboth i and j to zero.

Why do we have to know this? Because of the single most-often made eror in C. Consider

int a=5;

i nt iszero;

iszero= a==0;

printf("iszero=%d a=%d\n",iszero);

This computes (in iszero) whether a equals 0. It printsiszero=0 (false) becaise a was 5 and it prints a=5 because
it isunmodified.

However, many people make the mistake of writing

int a=5;

i nt iszero;

iszero= a=0; // assignment operator instead of relational operator
printf(“iszero=%d a=%d\n",iszero);

Thisprint still printsiszero=0, so it looks ok! However, it also prints a=0, becaise ais assgned the value 0 (and
that isasdgned to iszro).

Be aware that = assgns the value on the right to the variable on the left whereas = = compares the |eft-hand
value with the right-hand value. It is one of the most frequent errorsin C to write = (becmes) where == (equals)
isintended.*®

3.4.7 Combining operators
A final warning is on evaluation order. When we write

i=2*3+4;

18 Dutch: geschakdd

19 Actually, the most frequent error iswritingif(a=0) instead of if(a==0) but the if-statement has not yet been
explained.

PRC for E 24

the value of i beacomes 10 (6 plus4) not 14 (2 times 7). The reason for thisisthat multi plication has a higher
precendence than addition.?° But we can (and usually should) override that with parenthesis:

i= 2 * (3+4);
So precalenceis about the order of evaluating operators.

What most people don’'t know isthat ANSI C leaves unspedfied the order of evaluating the operands.®*

int i=0;
int j=+++i;

The a&ove might result in j getting the value 1 where most people would exped 2. They claim: firsti is pre-
incremented so the left hand side operand of + has value 1 and the right-hand sideis also i which then hasthe
valueof 1, soj is %t to 1+1. However sincethe order of computing the operandsis freg a C compiler might
dedde to first compute the right-hand operand of + (thei, which has value 0) and then the left-hand side operand
(the ++ i, which incrementsi from O to 1 and has value 1). Finaly it evaluates the operator (the + on 1 and Q)
resulting inj beingset to 1

In the following more redistic examplesit isnot guaranteed that f is cdled before g.

int i=f(3)+g(5);
printf("f=%d, g=%d\n", f(3), g(4))

3.5 Outside the scope of this course
Several aspeds of expressions are outside the scope of this bodk. For example

» Severa operators (typecasts, pointer dereferencing, if-operator, comma-operator).
* Thedetail s of operator precedence
* Thedetail s of evaluation order and sequence points.

» Typewersions, sign extension, integer promotion.

20 Some people (claim to) know the precalenceof all operators. But isit wise to assume that the maintainer of
your code dso knows them? After al, there ae nealy 50 opeatorsin C. Furthermore, precendenceis not
intuitive in all cases. For example << (which islike multi plying) has lower precadencethan + (whereas * has
higher). The bitwise operators (&, #, |) have lower precealencethan the relational ones like <= (wheras + and —
have higher).

2L ANSI C does define the order of evaluating operands for some operators, the so-call ed sequence points (e.g.
&& and ||).

PRC for E 25

4 Statements

This chapter discusses ®veral incarnations of statements: assgnments, function-cdls, blocks, the if-statement,
and two loop-statements: while and for.

4.1 Statements

An expression computes something, but it doesn’t do anything (unlessit is an expression with side dfeds).
Statements on the other hands are the things that adually do something. We have drealy seen several examples
of statements.

For example,
i=5;
isaso-cdled assignment statement;

printf("Hello, world!");
isafunction-call statement, and

return O;
is a so-cdled return statement.

We have dso seen the block statement.

... first declarations ...
... then a series of statements ...

}

It was a bit disguised, but the main function has a block statement after its header (the int main(void) part).
Observe that the block statement consists of an opening brace{, then zero or more dedarations, then zero o
more statements, and finally a dosing brace}. Multi ple statements can simply be put one after the other.

The block statement is adually rather important. The rest of this chapter shows svera other statements sich as
if, while and for. All of these conditionally and/or repeaedly execute the asingle statement. If that one statement
is not enough, the block statement is used. It groups sveral statementsinto one.

4.2 |f-statement

Sometimes, a program needs to take diff erent steps when a cetain condition holds. Thisis achieved with an if-
statement, also known as ®ledion statement, conditi onal statement, or branch statement. The mnditionisa
“bodean” expression, i.e. an integer expresson that is either O (false) or non-zero (true).

Here isasimple C program demonstrating an if-statement:

#i ncl ude <stdio.h>

int main(void)
LI
int i
printf("Enter a value:");
scanf("%d", &i);
if(i<0)
printf("Warning: the value is negative\n");
printf("Done\n");
return O;

PRC for E 26

This program accepts a number from the user. It then tests the number using an if-statement to seeif it isless
than 0. If it is, the program prints a warning message. Otherwise, the program prints no warning. Thei<0 portion
of the program isthe @ndition (a“bodean” expresson). C evaluates this expresson to dedde whether or not to
print the message. If the expresgon evaluates to “true” (non-zero), then C exeautes the single statement
immediately followingthe if keyword (the so-cdl ed then statement). If the expression is “false” (zero), then C
skips the then statement.

In either case, exeaution continues with the statement after the if/then; Done is always printed.

Note, the parenthesis after the if keyword are mandatory! So the following is an error.

if i<0 1 Error: parenthesis missing
printf("Warning: the value is negative\n");

The C programming language is case sensitive, so the if-statement must be written all | ower case (and similar for
al other keywords. while, for, return, ...).

Coding conventions dictate that the then statement is indented. However, the C compil er doesn’'t care. So the
following fragments all achieve the same (but espedally the third one is frawned upon).

if(i<0)
printf("Warning: the value is negative\n");

i f (i<0) printf("Warning: the value is negative\n");

i f(i<0)
printf("Warning: the value is negative\n");

We wuld even convert the then statement into a block statement “grouping” just the function cdl.
i f(i<0)

printf("Warning: the value is negative\n");

Let's ehow to ded with an if requiring multi ple statementsin the then part. The good approach is a block.
i f(i<0)

printf("Some extra statement\n”);
printf("Warning: the value is negative\n");

}
A common mistake is to indent both, but forgetting the braces.

i f(i<0)
printf("Some extra statement\n”);
printf("Warning: the value is negative\n"); // Indentation misleading or braces missing

Recdl that C doesn't care eout indentation (it’s for human reeadabili ty), it only cares about braces for grouping.
So the eéove fragment will print

Some extra statement
Warning: the value is negative

when i is negative, and it will print

Warning: the value is negative
wheni is positive (or zero).

Badk to the if-statement. It has an optional else part. Here's slightly more aomplex example, that usesiit:

PRC for E 27

#i ncl ude <stdio.h>

int main(void)
t
int i
printf("Enter a value:");
scanf("%d", &i);
if(i<0)
printf("The value is negative\n");
el se
printf("The value is not negative\n");
printf("Done\n");
return O;

}

The then statement as well as the el se statement (the statement immediately following the else) could be any
kind of statement, including an if-statement!

#i ncl ude <stdio.h>

int main(void)
o
int i
printf("Enter a value:");
scanf("%d", &i);
i f(i<0)
printf("The value is negative\n");
el se
if(i==0)
printf("The value is zero\n");
el se
printf("The value is positive\n");
printf("Done\n");
return O;

}

The two if-statements are said to be cacaded?. Cascadingif * s are quite often not indented; rather they are
written as foll ows (thisis dyle, not syntax):

i f(i<0)
printf("The value is negative\n");
else if(i==0)
printf("The value is zero\n");
el se
printf("The value is positive\n");
Alternatively, we could follow the dways-use-braces convention
if(i<0)
printf("The value is negative\n");
el se
i f(i==0)
printf("The value is zero\n");
el se
printf("The value is positive\n");
}
or the nealy-aways-use-braces convention (the author’ s preference)

22 putch: geschaked

PRC for E

28

i f(i<0)

printf("The value is negative\n");

}
else if(i==0)
printf("The value is zero\n");
}
el se

printf("The value is positive\n");

All four alternatives are egual in semantics.

The C language dso feaures a switch statement that is a shorthand for cascading if ’s. It is beyond the scope of
thisbodk.

Hereisamore complicated Boolean expresson:

i f((0<=x) && (x<10))
z=1,

el se
z=0;

This datement says, “If (the valuein) variable x is greaer or equal to 0, and x is lessthan 10, then set the
variable zto 1, otherwise set it to 0’. By the way, thisif-statement could be reduced to

z= (0<=x) && (x<10);

sincethe value of (0<=X) && (x<10) happensto be 1if the value in variable x is geaer or equal to 0, and less
than 10, and O dherwise!

We mnclude with the templates of the if-statement:

expression

statement

or

expression
statement

statement

4.3 While loop

Until now, there is a serious drawback with our repertoire of C constructs: the run-time of the computer is
proportional to the amount of lines we write. If we want the computer to domore, we have to type more. That is
now going to change; we introduceiterations, repetiti ons, loops or whatever we want to cal them.

For example, suppose we want to print the integers 0, 1, 2, ... upto but excluding 10. We wuld write:

#i ncl ude <stdio.h>

int main(void)

{
printf("0\n");
printf("1\n");
printf("2\n");
printf("3\n");
printf("4\n");
printf("5\n");
printf("6\n");
printf("7\n");
printf("8\n");
printf(*9\n");
return O;

PRC for E 29

and wetypicdly seethat for ead number extra we want to be printed, we need to add ane line: “the run-time of
the computer is propartional to the amount of lines we write”. The dternative is aloop. The program below has
the same output as the program we just saw.

#i ncl ude <stdio.h>

int main(void)
t

int i

i=0;

whi | e(i<10)

printf("%d\n",i);
i=i+1;
}

return O;

}

Not only isthis shorter, it is aso much easier to update. If we need the numberstill 20, we just have to change
the10in 20.

The same remarks as for the if-statement apply to the whil e statement: the whil e keyword must be written lower
case, the parenthesis are amandatory part, and the so-cdled body of the whil e statement (the statement
immediately after the while keyword) is a single statement. If more statements need to be repeded, use ablock
statement for the body.

expression

statement

Let's have alook at a more mmplex example. Say that we would like to creae aprogram that prints a
Fahrenheit-to-Celsius conversion table. Recdl that the formulafor that is

C:SX(f -32)

Thetableis easily acoomplished with awhile loop:

#i ncl ude <stdio.h>
int main(void)

int f;
f=0;
whi | e(f<=120)

printf("%4d degrees F = %4d degrees C\n", f, (-32) *5/9);
f=f+ 10;
}

return O;

}

If we runthis program, it will produce atable of values starting at O degrees F and ending at 120 degrees F. The
output will | ook like this:

0 degrees F = -17 degrees C
10 degrees F = -12 degrees C
20 degrees F = -6 degrees C
30 degrees F = -1 degrees C
40 degrees F = 4 degrees C
50 degrees F = 10 degrees C
60 degrees F = 15 degrees C
70 degrees F = 21 degrees C
80 degrees F = 26 degrees C
90 degrees F = 32 degrees C

100 degrees F = 37 degrees C
110 degrees F = 43 degrees C
120 degrees F = 48 degrees C

The table's values are in increments of 10 degrees. We can seethat we can easily change the starting, ending or
increment val ues of the table that the program produces.

PRC for E 30

If we wanted our valuesto be more acairate, we wuld use floating point values instead:

#i ncl ude <stdio.h>

int main(void)

{
float f;

f=0.0;
whi | e(f<=120.0)

printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0/ 9.0);
f=f+10.0;
}

return O;

}

We seethat the dedaration for f has been changed to afloat, and the %f symbadl replaces the %d symbol in the
printf statement. In additi on, the %f symbal has ssme formatting applied to it: The value will be printed with six
digits and two dgits following the dedmal point. We have dso changed all lit erals from int’s to float’s (by
appendinga“.0’).

Now let's sy that we wanted to modify the program so that the temperature 98.6 isinserted in the table & the
proper position. That is, we want the table to increment every 10 degrees, but we dso want the table to include
an extraline for 98.6 degrees F because that is the normal body temperature for a human being. The following
program acomplishes the goal:

#i ncl ude <stdio.h>

#defi ne step 10.0
#defi ne human 98.6

int main(void)

float f;
f=0.0;
whi | e(f<=120.0)

i f ((f-step<human) && (human<f))
printf("%6.2f degrees F = %6.2f degrees C\n", human, (human -32.0)*5.0/9.0);

}
printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0)*5.0/9.0);
f=f + step;

}

return O;

}
The extra output line with the human body temparature (98.6) neals to be inserted just before aregular output
lineis printed for a higher temperature (100). So, we're tempted to write

i f (human<f)

However, this causes the “human body line” to be printed just before 100, but also before 110 and 120! It should
only be printed once, namely in the dlot 90..100. However, we wanted the program to still function when
stepping with 20 degrees or 5 degrees, that’ s why we have introduced the mnstant step, and the two-sided chedk
inthe if.

4.4 For loop
When taking a doser loop at whil e statements, we recognize apattern:
start

stay
{

statement
step

}

PRC for E 31

Just before the while loop, thereis an initializaion (the start expresson), there is an expresgon that determines
whether to stop the looping or whether to stay, and the body of the looptypicdly steps (increments) a variable.
Thisis such a cmmon pattern, that the C language has an abbreviation for it: the for loop.

star t [|stay [] step

statement
Again, if the body of the for loop consists of more than one statement a block must be used.

Let’s examine the pattern of temperature table program from the previous dion. We recmgnizethe start, the
stay, the stat(ement) and the step:

#i ncl ude <stdio.h>
int main(void)

{
float f;

:
whi le([<=120. 0)
{

[printf("%6.2f degrees F = %6.2f degrees C\n", f, (-32.0) *5.0/9.0)

=f+10. 0 ;
}
return O;

}
So, thisisrewritten using afor loopasfollows:

#i ncl ude <stdio.h>

int main(void)

{
float f;
for(ff0. O] f{=120. O] f#f+10. 0])
{
[printf("%6.2f degrees F = %6.2f degrees C\n", f, (-32.0) *5.0/9.0)
return O;
}

or even (sincethe body of the loopis asingle statement, and using a shorter assgnment operator):

#i ncl ude <stdio.h>
int main(void)

float f;
f or (f=0.0; f<=120.0; f+=10.0)

printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0/ 9.0);
return O;

}

Asageneral guideline, use afor loopwhen the number of steps (iterations) is known before hand, and use a
while loopwhen the number of stepsis not known before hand.

The most typica usage of afor loopisusing an integer variable i that isincremented by one (i++) until it
readies an upper limit. As an example, consider the program below that computes the sum of the numbers 0 up
to but excluding 10.

#i ncl ude <stdio.h>

int main(void)
t

int i

int s;

s=0;

f or (i=0; i<10; i++)

S= sHi;
return O;

PRC for E

45 The semicolon

In some languages, such as Pascd, the ; is a seperator (some cdl it ajoiner) of statements. So, if S1is sme
statement and S2is a statement, then S1; S2is also a statement.

C on the other hand, does not have a(extra) symbal to separate (join) two statements. Statements are seperated
(joined) simply by juxtaposition®. So, if Slis ®me statement and S2is a statement, then S1 Sdsaso a

statement.

This ounds wrong at first, because there ae alot of semicolonsin a C program. The truth is that the semicolons

are acualy part of most statements. For example, the function cal statement has the form

func(arg)]

the assignment statement has the form

var [=] expression [,]

the return statement has the form

expression []

but the block statement has the form

statement statement statement ...

without a semicolon.

4.6 Outside the scope of this book
There ae severa other forms of statements:

e empty statement (;) sometimes used in loops;
e multiple doiceswitch statement;

* ‘“reped” statement (do..while);

* break statement;

* continue statement;

« goto statement.

These ae beyond the scope of this bodk.

% n plain English: “pladng head to tail”; in Dutch “gewoon achter elkaa zetten”.

PRC for E

33

5 Datatypes

Sedion 3.2 introduced types (integers, floating point, charaders, strings and it even mentioned void). These
types are known as gandard types.

C also provides meansto build higger types from several smaller types, starting from these standard types. The
first mgjor construct is cdled array; it is a series of objeds of the same type. For example, astring is acually an
array of charaders. The second major construct isastruct (i.e. astructure, also known asrecord); it isa set of
objeds of multiple types. For example, a date (day=25, month="December”) is usually stored as a struct.

5.1 Arrays

An array lets us dedare and work with a mlledion of values of the same type. For example, we might want to
creae a olledion of five integers. One way to doit would be to dedare five integers diredly:
int i
int j;
int k;
int I;
int m;
Thisis okay, but what if we neaded athousand integers? An easier way isto dedare an array of fiveintegers:

int a[s];

The five separate integersinside this array are accesed by position. Thisform of accessing is cdled indexng.
All arrays (in C) start at index 0 and go to n-1. Thus, int a[5] ; contains five dements, indexed with 0, 1, 2, 3, and
4. For example:

int a[5];

al0] = 12;

a[l]=9;

a[2]=7;, I see drawing
a[3] = 14;

af4] =1,

normal variable[[array variable
(a.k.a.scalan

int i int a[5];

i a[0]
a[1]
a[2] 7
a[3]
af4]

allocated by allocated by
the compiler the compiler

placing 7 ini placing 7 ina[2]
with statement | | with statement
i=17; a[2]=7;

One of the nicethings about array indexing isthat we can use aloopto manipulate the index. For example, the
following code initializes all of the valuesinthe a array to O:

PRC for E 34

int a[5];

int i

f or (i=0; i<5; i++)
ali]= 0;

By the way, there ae two occurrences of 5 in this code, bath have to dowith the size (5) of the aray. If one
changes, the other one should also change. Seasoned programmers make a onstant for that.

#define SIZES

i nt a[SIZE];

int i

f or (i=0; i<SIZE; i++)
afil=0;

The following code reads values into an array and prints them out in reverse order.

#i ncl ude <stdio.h>
#defi ne SIZES5

int main(void)

i nt a[SIZE];

int i

f or (i=0; i<SIZE; i++)
scanf("%d", &a[i]);

f or (i=SIZE-1; i>=0; i--)
printf("a[%d]=%d\n", i, a[i]);

return O;

}

One of the dassicd problemsfor arraysisto sort them. Theisaue hereisto dothat fast. Thisis usually measured
in the number of comparissons that are needed. The top algorithms ort an array of n objeds using nlog(n)
comparisons (so, an array of 1000names takes 10 000comparisons). But these dgorithms require software
techniques outside the scope of this book. We present a midde-of-the-road algorithm; it requires n? comparisons
(so the 1000namestake 1 000 0@ comparisons which is 100times $ower).

#i ncl ude <stdio.h>
#defi ne SIZE 10

int main(void)

i nt a[SIZE]={5,9,2,1,0,3,4,8,6,7};
int i

/I Print old order

f or (i=0; i<SIZE; i++)
printf("%d ",a[i]);

printf("\n");

/I Sort
f or (i=0; i<SIZE; i++)
{n Find the smallest int in the section [i..SIZE) and put it at position i

/I Let p point to that smallest int found so far.
int p=i

/I Letjloop over the remaining [i+1..SIZE) int's
int j;
f or (j=i+1; [<SIZE; j++)

i T (afjl<alp])

p=j; 1l j points to a smaller int than p so remember that

/I At this moment p points to the smallest int in [i..SIZE)

{/'S wap cell pwithiin array a (start new block for temp var h)
int h=ali; // temporary storage for ali]
alil=a[p];
alp]=h;

PRC for E 35

}

/I Print new order

f or (i=0; i<SIZE; i++)
printf("%d ",a[i]);

printf("\n");

return O;

}
There ae severa asped worth noting

* The problem has been decomposed in small er parts, seperated with a whiteline
» Ead of the parts has a comment explaining its workings.

* Thisprogram feauresaloopin aloop. The so-cdled auter loop (loop with i) loops over all i ndexes, with the
aimto put the next smallest value & pasition i.2* Theinner-loop (Iloop with j) loops over all remaining
indexes, with the @m to find the smallest in the remaining part.?®

* The arayis $zed usinga mnstant S ZE.
* The aray hasaninitili zer ({5,9,2,1,0,3,4,8,6,7}).

* Thereisafragment that swaps two integers; it is coded in ablock statement with alocd variable h.

5.2 Structs
Structuresin C allow usto group oljeds (variables) of different typeinto one padage. Here's an example:

struct MyStruct{ int a; int b; float c; char d;}s;

Thisisadualy avariable definition (for variable s) together with a struct definition: if we want another variable
of the same type, we only need to reped the structure tag, not its actual definition:

struct MyStructr;

It is even allowed to have astruct definiti on without the variable definition, which only makes enseif the struct
isused later on:

struct MyStruct{ int a, int b; float c; char d;} // No variable!
struct MyStructs;
struct MyStructr;

We accssfields of structure usingadoat (.), for example, s.b=7; .

24 Some developers adually write down an invariant: a proposition that stays true whil e the loop progress. In
this case, the invariant (of the outer loop) is: the aray segment a[0..i) is corredly sorted and all values a[0..i) are
lessthan any of the valuesin &[i..SIZE).

% Theinvariant of the inner loopis: a[p] is the smallest value in the segment . j).

PRC for E 36

normal variable struct(ure) variable
(a.k.a.scalan
struct MyStruct {
int a;
int i ! nt b;
! float c;
char d;
}s;
[sa
s.b 7
S.C
s.d
allocated by allocated by
the compiler the compiler
placing 7 ini placing 7 ins.b
with statement with statement
i=7: S. b= 7;

The program below uses a struct to store adate (ayea, a month and a day). Observe that the fields of the struct
can be read with scanf (e.g. scanf("%d",&d.month);), but they can also be used in the expresson of the if
(e.g. d.month==12) and can be printed (e.g. printf(" Christmas %d\n",d.year);).

#i ncl ude <stdio.h>

int main(void)
{
struct date {int year; int month; int day; } d;
printf("Enter year : "); scanf("%d",&d.year);
printf("Enter month: "); scanf("%d",&d.month);
printf("Enter day : "); scanf("%d",&d.day);
printf("\nlt is ");
i f (d.month==12 && d.day==25)
printf("Christmas %d\n",d.year);
el se
printf("%d %d, %d\n",d.year, d.month, d.day);
return O

}
This has output (itali c part entered by user)

Enter year : 2006
Enter month: 12
Enter day : 25

It is Christmas 2006

5.3 Combinations

It isallowed in C to make arays of structs, structs of structs, structs of arrays, or even an array of structs of an
array, and so on. For example, to make an array for 10 date’'s we auld write

struct date {int year; int month; int day; } d[10];

With this definition, it takes the foll owing code to set the last date to Christmas:

d[9].year= 2006;
d[9].month= 12;
d[9].day= 25;

Consider another example where we have aperson record

PRC for E 37

struct person {
struct date DayOfBirth;
char Name[20];
} Somebody;

and of course, we could have an array of thirty persons

struct person FirstYearStudents[30];

To chedk whether name of the last person starts with P, we would write

i f (FirstYearStudents[29].Name[0] =="P") ...

5.4 Storing standard types

Vaues (and variables) of adifferent type use adifferent amount of storage space Furthermore, the meaning of
the bit patternsin that storage space &so dffers. This sdion explains dorage size and hit patterns.

It is espedally important when writi ng software that drives hardware, becaise then ead bit needs consideration.

5.4.1 Storage size

Let usfirst have alook at the size of an expression. Thereis a spedal operator, sizeof(E), that returnsthe size (in
bytes) required to store expressgon E. So, when we run the foll owing program (modern compil er on modern PC)

#i ncl ude <stdio.h>

int main(void)

{

si gned char sc;
unsi gned char uc;
si gned short int ssi
unsi gned short int usi
si gned int s
unsi gned int u_
si gned long int sl
unsigned long int uli
fl oat f;
doubl e d;

| ong doubl e Id;
printf("signed char: %d\n",sizeof(sc));

printf("unsigned char: %d\n",sizeof(uc));
printf("signed short int : %d\n",sizeof(ssi));
printf("unsigned short int : %d\n",sizeof(usi));
printf("signed int : %d\n",sizeof(s_li));
printf("unsigned int : %d\n",sizeof(u_i));
printf("signed long int : %d\n",sizeof(sli));
printf("unsigned long int : %d\n",sizeof(uli));

printf(“float : %d\n",sizeof(f));
printf("double : %d\n",sizeof(d));
printf("long double : %d\n",sizeof(ld));

return O;

}
we get the following output

signed char: 1
unsigned char: 1
signed shortint: 2
unsigned short int : 2
signed int: 4
unsigned int:4
signed long int: 4
unsigned long int: 4
float 14
double 8
long double 18

PRC for E 38

We seethat char’s only take one byte of memory to store, a short takes 2 bytes, an int and alongare the same,
they both take 4 byte. The floating point type float takes 4 bytes and doulde and long dauble are the same: 8
bytes (remember these figures are not for C in general, they apply to modern compiler and a modern PC).

5.4.2 How is the value 65 stored?

Let us next have alook at the bit patterns; at how avalueis gored in memory. Suppase that we assign all
variables the value 65 (with statements like sc=65; f=65;). How does the memory look like?

signed char 41

unsigned char 41

signed shortint 00 41

unsigned short int 00 41

signed int 00 00 00 41

unsigned int 00 00 00 41

signed long int 00 00 00 41

unsigned long int 00 00 00 41

float 42 82 00 00

double 40 50 40 00 00 00 00 00
long double 40 50 40 00 00 00 00 00

The output above (memory isdumped in hex) showsthat a (signed or unsigned) char with value 65isfill ed with
the expedted hit pattern:

|0111010l0101011|

If wetake alook at the longer integers, we seethat they get extended with zeros. For example ashort with value
65is gored asfoll ows.

|0101010|Olololololllolololololll

The reader may wonder about the float (or (long) double) representation. Usually (as for the compiler used in
thisexample) afloat is dored acording to the IEE 754 standard:

65(dec)= 41(hex)= 1000001 (bin)= 1.000001 E 110 (bin) (normalized)

sign: + coded as 0
exp: 110(bin) coded as 10000101 (the +127 notation)
mant: 0000010...0000 (drop the leading 1)

010000101 00000100000000000000000 (sign, exp, mant concatenated)
0100 0010 1000 0010 0000 0000 0000 0000 (bin)

42 82 00 00 (hex)

5.4.3 What does the pattern A0...A0 mean?

We can aso reverse the game. Let us assume that we fill all the bytes that make up avalue (so the two bytes of a
short, or the 4 bytes of an int) with the bit pattern 101000@ (bin), that is AO (hex) or 160 (dec).

If thisis the memory reserved for aunsigned char, it represents the dedmal value 160. If this memory is reserved
for asigned char, it represents the dedmal value —96. Why? Because by interpreting it as sgned, it islooked at
with two’ s-complement glasses. It hasthe MSB (most significand hit) 1, so it is negative.

The table below il lustrates all cases.

signed char: -96

unsigned char: 160

signed shortint: -24416
unsigned short int : 41120
signed int : -1600085856
unsigned int : 2694881440
signed long int: -1600085856
unsigned long int : 2694881440

float :-2.721135e-019
double :-1.587369e-151
long double :-1.587369e-151

PRC for E 39

5.4.4 Which type to use?

When we want to store anumber, which type to use? The rule of thumb isto always use int. It is the fastest and
eaiedt. If storage matters (we have littl e memory and we have alarge amount of numbers to store) only then
think about using short or char. If int istoo small (we want to store the value 40000and the @de neals to runon
e.g. an 805]) use long

Be very careful when mixing (sub)expressons of a different type in one expression. The following program
chedks whether signed integer i with value —1 is small er than unsigned integer n with value +1.

int main(void)
{
si gned int i=-1;
unsi gned int n=+1;
i f(i<n) printf("yes"); el se printf("no");
return O

}
To our big surprise, this program prints

no

Why isthat? Because we mix two types (signed i and unsigned n) in one expression (i<n) and then the dark rules
of C apply. In this case ANSI C dictates that the unsigned wins, i.e. the signed value is interpreted as an
unsigned. The signed i equals—1, so it has bit pattern 111111111111111. With an unsigned interpretation, this
has the value 65535 So the dark rules of C trandate the expression to

i f (65535<1) printf("yes"); el se printf("no");
which clealy should print no!

Do we have to know this? If we make aliving out of C programming yes! Otherwise, just remember not to mix
typesin one expression; then we'rerelatively safe.

Another warning: never compare floats for equality. In the foll owing program, we assign float f the value of
1 fifth. We print its value, which isindeed 0.2, and compare it with 0.2.

int main(void)

{
float f=1.0/5.0;

printf("f=%f\n", f);
i f (f==0.2) printf("yes"); el se printf("no");
printf("\n");}

This prints

f=0.200000
no

Why “no” ? because the binary representation of 0.2 is not finite:
0.0011001100110011001100110011

and then one 0.2 might be stored diff erently then another

0.00110011001100110011001101 // rounded (up)
0.00110011001100110011001100 // chopped (rounded down)

in the IEEE 754 notation.

So, remember to never compare floats for equality, rather use “less than”:
i f (abs(f-0.2)<1E-10)
5.5 Storing a struct

What is the memory layout of a struct?

Suppase we have astruct like the foll owing:

PRC for E 40

struct Two{ char fl; int f2;}s;
On a PC we know that sizeof(s.f1) equals 1 and sizeof(s.f2) equals 4.
However on that same PC, sizeof(s) isnot 5 but 8 bytes!

The reason for thisisthat (by default) compilers optimize for speed (and not for size). And for speed, it helps
when integers start at an addressthat is a multiple of 4 (thisis due to the PC hardware achitedure). Asaresult,
the struct has the following memory layout:

<«—fl—>» < f2 >
lllllll IIIIIII IIIIIII IIIIIII lllllll lllllllllllllll lllllll

The gray bytes are not used. Thisis cdled paddng. By padding structs the cmpil er achieves alignment of
variables (fields), lealing to fastest code.

It isvery easy to check this for ourself. Simply run the following code (thereisa“new” operator here: & which
returns the memory addressof a variable®®, and a new printf template %p which is used to print addresses)

printf("start of s.f1 at %p, size of s.fl1 is %d\n", &s.f1, si zeof (s.f1));

printf("start of s.f2 at %p, size of s.f2 is %d\n", &s.f2, si zeof (s.f2));

printf("start of s at %p, size of s is %d\n", &s, si zeof (s));
which prints

start of s.f1 at 0064FDEDO, size of s.flis 1
start of s.f2 at 0064FDEA4, size of s.f2 is 4
start of s at 0064FDEQ, size of s is 8

confirming (detailing) the previous picture.

< s (size=8) >

«f1(size=1p <« f2 (size=4)——F———>»
lllllllIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllllllllllll
0064FDEO 0064FDE4

5.6 Outside the scope of this course
There ae several types and type related aspeds not covered in this bodk:

e enumeration types (enum)

e union types (union)

e bitfields

* multi dimensiona arrays

* pointers (*) —thisis probably the biggest omisson in thisbodk
» dtrings (sincethey are aform of painters)

» typedef 'sfor giving the mnstructed type aname

e theconst modifier

%6 Actually “memory address’ means “pointer”, but we promissed not to do pantersin this bodk ©.

PRC for E

41

6 Functions

Most languages allow one to creae functions (subroutines, procedures) of some sort. Functions let us chop up a
long program into named sedions D that the sedions can be reused throughout the program. It is even possble
to group popular functions into a separate C fil e(s) and convert them into areusable library. Thisis acually what
has been done for e.g. printf and scanf !

6.1 Divide and conqu er

One of the most important aspeds of afunction isthe fad that it chops-off a part of the main program. Thisisan
instance of the “divide and conquer” paradigm of solving big problems.

Let’'s gart with an example of a (overly) simple program.

#i ncl ude <stdio.h>

int main(void)

{

/I Intro
printf("Welcome to my fabulous program HELLOWORLD\n");
printf("Version 1.0 by Maarten Pennings\n”);

/I Here starts the real content of my fabulous program
printf("Hello, world\n");

/I Done with the real content of my fabulous program
printf("HELLOWORLD says bye now...\n");

return O;

}
Next, let’s “chop-off the introduction into a named sedion”.

#i ncl ude <stdio.h>
voi d Printintro(void)

printf("Welcome to my fabulous program HELLOWORLD \n");
printf("Version 1.0 by Maarten Pennings\n”);
}

int main(void)

{
Printintro();

/I Here starts the real content of my fabulous program
printf("Hello, world\n");

/I Done with the real content of my fabulous program
printf("HELLOWORLD says bye now...\n");

return O;

}

We have now creaed a function with the name Printintro. It is cdled from main viathe function cdl statement
PrintIntro();. Note that the parenthesisin afunction cdl are mandatory. A function header (the function name,
its parameters and the types) together with itsbody are cdled afunction dfinition.

In this example, the function Printintro accepts no parameters (that’s what the “(void)” after Printintro is
spedfying), nor doesit return any result (that’s what the void before Printintro is gedfying). In general, C
functions can accept an unlimited number of parameters, and they can return a value of pradicdly any kind. The

PRC for E 42

(types) of its parameters, the type of itsresult and its name, are together cdled the signature of afunction (and
the signature is defined by the function header).

Note that thereis no ; after the header in the first line. If we acédentally put one in, we will get ahuge ascade
of error messages from the compiler that make no sense. Also note that there is no semicolon at the end of the

body.

By now, the mystery of main should have been resolved. It’sjust afunction, like any other. The only spedal
thing about it, is that the operating system (the loader) will cdl it, so its parameters, result and name (in short, its
signature) are fixed — aherwise the loader wouldn’t know what to cdl, what to passnor what to dowith the
answer.

For ill ustrative purposes, let’s creae another function for the exit message.

#i ncl ude <stdio.h>
voi d Printintro(void)

printf("Welcome to my fabulous program HELLOWORLD \n");
printf("Version 1.0 by Maarten Pennings\n”);
}

voi d PrintExit(void)

printf("HELLOWORLD says bye now...\n");

int main(void)

{
Printintro();

printf("Hello, world'\n");
PrintExit();
return O;

}

Many people believe that the éove order of the functionsislogica. C doesn't carein what order we put our
functionsin the program, as long as the function signature is known to the compiler beforeit iscdled. So

#i ncl ude <stdio.h>

voi d PrintExit(void)
{1}

voi d Printintro(void)

{..}

int main(void)

{
Printintro();
printf("Hello, world'\n");
PrintExit();
return O;

}
isalso ok, but

#i ncl ude <stdio.h>

voi d PrintExit(void)
{..}

int main(void)
{
Printintro(); // C compiler will give an error that it doesn’t know Printintro
printf("Hello, world'\n");
PrintExit();
return O;

}

voi d Printintro(void)

{..}

PRC for E 43

isnat ok! The main function is cdling Printintro, before the definition of Printintro is given (this problem can
be fixed though, read on!).

6.2 Returning results

Let’s make afunction that’s alittl e bit more cmmplex, one that returns avalue. It’s hard to come up with a
meaningful function with that signature. But there is one. The standard function randreturns a pseudo random
number.?’

i nt rand_seed=10;

/I from K&R: produces a random number between 0 and 32767.
int rand(void)

{
rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int)(rand_seed /65536) % 32768;

}

Theint rand(void) line dedares the function randto the rest of the program. It spedfies that randwil | accept no
parameters and returns an integer result. Note that even though there ae no parameters, we must use the (void).
They tell the compil er that we ae dedaring a function rather than simply dedaring an int.

The return statement isimportant to any function that returns a result.® It spedfies the value that the function
will return. By the way, the return statement al so causes the function to exit immediately. This means that we
can placemultiple return statements in the function to give it multi ple exit points.? If we do not place areturn
statement in a function, the function returns when it reades} and returns ssme spooky value (many compil ers
will warn usif we fail to return a spedfic value). In C, afunction can return values of nealy any type: int, float,
char, struct, etc.

There ae several corred waysto cal the randfunction. For example: x= rand();. The variable x is assgned the
value returned by randin this statement. Note that we must use () in the function cal, even though ro parameter
is pased.®

We might also cdl randthisway:

i f (rand()>100)

Or thisway:

rand();

In the latter case, the functionis cdled but the value returned by randis discarded. We probably never want to
dothiswith rand, but many functions return some kind of error code, and if we ae not concerned with the eror
code (for example, because we know that an error isimpossble) we can discard it in thisway. Thisis not
theoreticd: the printf statement returns the number of charaders printed or a negative value if an output error
oceurs.

Aswe saw above, functions can use avoid return type if we intend to return nothing.

" The rand() function uses a (global) variable rand_see. It isan integer, and it isinitialized with 10. Global
variables are usable in any function body that occurs later in the file. Global variables are mndemned in alot of
coding conventions; locd variables (i.e. variables defined in the body of afunction and only acassble by that
function) are by far preferred. However, locd variables “die” when the function ends, and that is not what we
want in this case (otherwise rand() would return the same “random number” each time).

28| n this example, the return expression hes an operator that is outside the scope of this bodk, namely a typecast
operator, written as (unsigned int).

29 A function with multi ple exit points is also condemned by some developers as bad style.

%0 Otherwise, x is given the memory addressof the rand function, which is generally not what you intended.
Memory addressesis a pointerstopic, and hence not part of thisbodk.

PRC for E 44

6.3 Passing parameters
C functions can accept parameters of any type. For example, the function fac defined as

/I Returns factorial of n (n>=0)
int fac(int n)
{

int f

int i

f=1;

for (i=2;i<=n;i++)

f=f*i;
return f;

returns the factorial of n, which is passed in as asingle integer parameter.®*

To passmultiple parameters, separate them with commas:

int add(int a int b)

return atb;

}
Given these two functions, we could now type

int main(void)
t
int i
int j;
i= fac(5);
j= add(i,3);
j=] * fac(add(1+2,3)+4);
return j;

}
not that thisisauseful program...

6.4 Passing arrays

Actually, the type of the parameters maybe any type nstruction. In this sdion we restrict ourselvesto array
parameters. A useful feature isthat we may leave out the size of the aray — in the dedaration of the parameter.

int sum(int row[])

{

}

The @ove function sum may now be cdl ed with an integer array with 5 items, but also with an integer array of
5000items. However, the function has one big flaw: how isit supposed to know the size of the aray? Thereis
no magic in C, so we have to fix that ourselves:

return ...

int sum(int size, int row[])
t

int s;

int i

s=0;

f or (i=0; i<size; i++)

s=s + row[i];
return s;

}
Given this functions, we could now type

31 Recdl that the fadorial of 5 (mathematicaly written as 5!) is 5x4x3x2x1 and, for example, 3!= 3x2x1.

PRC for E

int main(void)
{
int rowl[5];
int row2[5000];
... Il filling rowl and row2
printf("sum[row1]=%d\n", sum(5,row1));
printf("sum[row2]=%d\n", sum(5000,row2));
printf("sum[row2[0..99]]=%d\n", sum(100,row2));
return j;

}
Note the 3" printf.

6.5 Scope

The scope of avariable describes where in a program'’s text a variable may be used. Scope is a syntacticd asped
of avariable. The scope of avariableisthe portion of the program code for which the variable's name has
meaning and for which the variableis said to be visible. Entranceinto that scope typicdly begins avariable's
lifetime and exit from that scope typicdly endsitslifetime. C has two notions of scope: global variables, and
variablesin ablock (which includes functions, sincetheir body isablock). A global variable may be referred to
anywhere in the program, a block variable may only be referred to in that block. It is erroneousto refer to a
variable whereit is out of scope.

int vi; /I vl1is global, can be used anywhere in f and in main
int f(int v2) 1 v2 is local to f, can be used anywhere (and only) in f
int v3=v2*v2; 1 v3is local to f, can be used anywhere (and only) in f
if(vi<vd)
int v4=v3-vl; 1 v4 is local to this then-part, can be only in then-part
return v4,
}
el se
{
return vi;
}
}
int main(void)
int vb=5; 1 V5 is local to main, can be used anywhere (and only) in main
vl=1;

return f(vb+vl)

}

Variablesin an inner scope, hide variables from the outer scope if they have the same name. In the fragment
below, there isa global integer x. Sinceit is global, main can useit (assgn 5to it, passit tof etc). Similarly,
sincex isglobal, f could also useit. However f hasalocd x (its parameter) which hides the global x (makesthe
global x inacaesible).

int x /Il global x

int f(int x) " introduces a local x at the scope of function f
X=X+3; /l'local x (of f)
return x*2; /'local x (of f)

}

int main(void)

t
inty;
x=5; /I sets global x to 5
y=f(3);
printf("%d\n”,x); // global x
y=f(x); /I global x

printf("%d\n”,x); // global x
}

The aove program prints two times a 5, sincevariable x of main is not changed. Even in the latter cdl to f, the x
is not changed. This mechanism of passng a parameter (that can not be/ is not changed) is known as call by
value.

PRC for E 46

There ae medhanismsin C to have the value of variable x changed by function f. To achieve this, x should not
be passed by value, rather x should be passd by reference However, in C passng by reference requires in-depth
knowledge of pointers, which is outside the scope of this bodk.*

6.6 Function prototypes

Many coding conventions consider it goodform to use function prototypes for al functionsin a program. A
prototype dedares the function signature, i.e. its name, its parameters, and its return type to the rest of the
program prior to the function's acdual definition. A prototype is a header followed by a semicolon (;) insteal of a

body.

Aswe saw above, the foll owing program will give compiler warnings (unfortunately, it will not give us an error
that the cdl to adddoes not have enough parameters!).

#i ncl ude <stdio.h>
int main(void)

printf("%d\n",add(3)); // missing second parameter is not trapped
return O;

}
int add(int i, int j)
{

return i+;

}

One way to solve thisisto exchange the placeof main and add Another way to solve this problem is prototypes.
C lets us placefunction prototypes at the beginning of (actually, anywhere in) a program. If we do so, C chedks
the types and counts of al parameter lists. Try compiling the foll owing:

#i ncl ude <stdio.h>
int add(int i, int j); // the prototype (note presence of semicolon and absence of {})

int main(void)

printf("%d\n",add(3)); // due to earlier prototype, we now get a warning
return O;

}

int add(int i, int j)

{
return i+

}

The prototype caises the cmm pil er to flag an error on the aroneous cal to addin the printf statement.

A function definition consists of a header and a body

| i nt add(int i, int J) Theheader specifies thesignature(name, parameters, types).

{ Thebody defines thémplementationwhich statements to execute].

return i+j;

}

A function prototype consists of a header amdsemicolon.

| i nt add(int i, int J) Theheader specifies thesignature(name, parameters, types).

Thesemicolon indicates this is a function prototype instead of a definitjoj

32 But, the second parameter of scanf("%d",&i) is passd by reference

PRC for E 47

1a)
1b)
1c)
1d)
le)

3a)
3b)

3c)

3e)

7 Old examiniations
Sincethese ae mpies of red examinations, they’re in Dutch.
7.1 Trial for 2005
Hogeschool Eindhoven
Studierichting Hoger e I nfor matica

Vak : SPR3/PRCE

Docent : Maaten Pennings, Agnes Veugen

Tijdstijp . Dit iseen proeftentamen voor PRCE samengesteld uit bestaande PRC tentamens

Opgave 1. Expressies (1 punten per vraag; totaal 5) her2002 (verkort)

Ged voor ek van de volgende statements wat de output zd zijn.

printf("%d", 0x30 & 0x11);
printf("%d", 0x30 && 0x11);
printf("%d", 0x03 << 0x02);
int i=10; printf("%d", i=i+1);
printf("%d", 123);

Opgave 3. Structs en functies (20 punten 2, 4, 4, 5, 5) her2002 (aangepast)

We gaan in dezeopgave werken met datums. Een datum representeren we met een struct met drie integers, voor
jaa, maand en dag.

Ged destruct voor Datum.
Schrijf een functie

i nt DatumKerstmis(struct Datumd)
waabij de functie 1 ofdevert alsdatum d op 25 ecember valt, en 0 alsd niet op 25 ecember valt.
Schrijf een functie

voi d DatumPrint(struct Datumd)

die e datum print doar east de dag te printen (1..31), dan een minnetje, dan de maand (1..12) ook wee
gevolgd doa een minnetje en tendotte het jaa (bijvoorbedd 31-12-199%9).

Schrijf een functie
i nt DatumVergelijk(struct Datumdl, struct Datum d2)

die—1retourneat asdl kleiner is (vroeger isin detijd) dan d2, O retourneat alsdl gelijk isaand2 en +1
retourneat alsdl groter is(later isin detijd) dan d2. Voorbedden: 30-12-1999is groter dan 29-12-1999 en
groter dan 31-10-1999 maa kleiner dan 1-1-200Q

Tip: kijk eerst of het jaa van d1 kleiner isdan het jaa van d2 (zoja, return —1) of dat het jaa van d1 groter is
dan het jaa van d2 (zoja, return +1); ga dan pas de maanden (net zo) en de dagen vergelijken.

PRC for E 48

4q)

4b)

4c)

4d)

Opgave 4. TelZe her2003 (aangepast)
Schrijf een functie, TelZe genaamd, dat met predes twee agumenten aangeroepen moet worden:

int TelZze(char si1f], char s2[])
De functie bepadt het aantal kee dat in beide agumenten op overeenkomstige pladsen hetzdfde karakter stad.

Voorbeeld:
Aanroep: TelZe("peter", "patse")
Output: 2 (op de 1° plads gaa in beide agumenten een p en op ce 3° plaasin beide eat.)
Nota bene: de C compil er zorgt ervoor dat er atijd een karakter extrain het karakter array stad (bij gebruik van
de“...” notatie), namelijk een ascii waade 0 aan het einde!
Opgave 4. Breuken (8 punten per vraag; totaal 32) ten2002 (aangepast)

We gaan in dezeopgave werken met breuken. Breuken kunnen we representeren met een (integer) teller en een
(integer) noemer. We definieren daarom het volgende struct om in C met breuken te werken.

t ypedef struct Breuk

int teller;
i nt noemer;

I3
Schrijf een functie
struct Breuk BreukLees(void)
dietweeintegersinleest en dezeopslaa in een Breuk die geretourneerd wordt.

Schrijf een functie
voi d BreukPrint(struct Breuk a)

die ea breuk print doar eest de teller te printen, dan een dash, en dan de noemer (bijvoorbedd 25200).

We brengen in herinnering dat het produkt van de breuken t,/ n, ent,/ n, gelijk isaan (ty x ty) / (na X ny).
Voorbedd: 2/3 mad 5/7is10/21.

Schrijf een functie
struct Breuk BreukMaal(struct Breuk b1, struct Breuk b2)

die het produkt van b1 en b2 berekent en dit retorneat.

Schrijf de main() functie die eest tweebreuken inleest (met behulp van BreukLees()), zedaana
vermenigvuldigt (met behulp van BreukMaal()) en die tendotte het hele sommetje print (met behulp van
BreukPrint() en wat printf's).

Voorbedd: het vermenigvuldigingssommetje van 2/3 en 5/7 wordt alsvolgt uitgevoerd.

2/3 x 5/7 = 10/21

(einde van het tentamen)

PRC for E 49

7.2 Real examination 2005

\ Hogeschool Eindhoven
(;,“my, Studierichting Hoger e I nfor matica
dedltiid

Vak : SPR3/PRCE tentamen
Docent : M.Pennings, A. veugen
Datum : 10 april 2006

tijd :18.00-19.40 uur

Hulpmiddelen : dictaa, boeken, aantekeningen
Normering: :20(opgl) + 5(opg2) + 10(opg3) + 15(opgd) + 25(opgs) + 15(opg6) + 10(bonus)

Waaschuwing: dit tentamen is alleen voor eledro studenten.
Werk netjes. = schrijven in plaas van = =, puntkomma's of acmlades vergeten etc. kost punten.

Opgave 1 Expressies (20 punten, 2 per deel-opg ave)
Ged voor ek van de fragmenten aan wat de output zd zijn (op een PC).

la printf("%d", OX5A | 0x3C);

1b. printf(*%d", Ox5A || 0x3C);

1c. printf("%d", 6 << 2);

1d. printf("%d", 6 <= 2);

le printf("%d", 6 == 2);

1f. printf("%d", 16);

1g. printf("%d", 27 / 4);

1h. printf("%d", 27 % 4);

1i. printf("%d", 'A' = 'C");

1. printf("%d", si zeof (char));

Opgave 2 Pre- and post increment (5 punten)

2. Wat is de output van het volgende fragment.
int i=4; printf("%d", ++i); printf("%d",i); printf("%d",i++);

Opgave 3 Printf (10 punten, 2 per deel-opg ave)
Ged voor elk van de fragmenten aan wat de output zd zijn (hint: de ASCIl waadevan ‘]’ is 106, Of 6A1¢).

3a printf(*%d", 106);
3b. printf("%5d", 106);
3c. printf("%x", 106);
3d. printf("%X", 106);
3e. printf("%c", 106);

Opgave 4 Theorie (15 punten, 3 per deel-opg ave)

da. Weat is linken?

4b. Wat ispaddng?

4c. Wat isindentatie?

4d. Wat is een escape tharacter?
de. Wat is een prototype?

PRC for E 50

Opgave 5. Priemgetallen (25 punten, 10+5+10)

We brengen in herinnering dat de C-expresse a % b de rest-bij-deling van a doar b oplevert. Dat betekent dus
dat dsa%b gelijk isaan 0, dat er geenrest is, ofwel dat b een deler van ais.
5a. Schrijf een functie

i nt AantalDelers(inta)

die het aantal delers van a retourneet. De precmonditieisa > 1 (dwz dat de functie dleen hoeft te werken voor a
= 1). Hint: gebruik een for-lusin dezefunctie.

Voorbedd: AantalDelers(6) retourneat 4, omdat 1, 2, 3, en 6 de vier delersvan 6 zijn.

5b. Alseen getal predes tweedelers heeft, dan noemen we dat getal een priemgetal.
Schrijf een functie (wederom met preconditiea= 1)

int IsPriem(int a)
die 1 retourneet alsa een priemgetd is, en die O retourneat as a geen priemgetal is.
Het is de bedoeling dat IsPriem() gebruik maakt van AantalDelers(), maa geen if, while, of for gebruikt.

5c. Schrijf de main() functie die een integer a inleest, IsPriem() gebruikt, en een van de volgende teksten
afdrukt als uitvoer:

* Invoer niet correct (moet positief zijn) dsas<0,

* Een priemgetal asagroter dan 0 en priemis,

* Geen priemgetal alsa groter dan 0 en niet priemis.

Opgave 6 Structures (15 punten)

Er zijn ved toepassngen waabij een grote serie getall en opgeslagen moet worden (temperatuur medwaades
van een weasstation, pixelsin een pladje, etc.). Vanzdfsprekend komt daa de vragg dat zuinig te doen. Een
van de technieken is run-length-encoding (RLE). RLE is gebaseerd op de hoop it opeenvolgende getallen gelijk
zijn; niet alleen de waades worden opgeslagen maa ook het aantal keer dat die waade aditer elkaa staat. De
reeks

13,13, 13, 13, 13, 14, 14, 15, 15, 15, 13, 12, 12, 12, 12, 10, 10, 10, 13, 13, 13
wordt alsvolgt RLE gewmdeed

13 (5x), 14 (2x), 15(3x), 13 (1x), 12 (4x), 10(3x), 13 (3x)
De 21 corspronkelijke getallen zijn dan in 7 paren (14 getallen) gecodead.

Om een element uit dezeRLE rij op te slaan maken we gebruik van het volgende structure

struct Paar{ i nt waarde; int aantal;}

Een struct Paar e, met ewaarde=13 en e.aanal=5 codeat het eeaste dement “13 (5x)” uit onzevoorbedd rij.
De helerij is natuurlijk een array van die dementen.We gebruiken bovendien de truc dat een spedad element
het einde van het array aangedt; dat is een element dat zijn aartal op Ohedt staan.

Kortom, onze voorbedd rij zou alsvolgt RLE gemdeed zijn.

struct Paar rijf] = {13,5}, {14,2}, {15,3}, {13,1}, {12,4}, {10,3}, {13,3},
{9999,0} };

6. Schrijf een functie PrintVoluit() die ee RLE gecodeeade rij voluit afdrukt. In het volgende programma

PRC for E 51

#i ncl ude <stdio.h>

struct Paar{ int waarde; int aantal;},
voi d PrintVoluit(struct Paarr[])

{

}

int main(void)
st ruct Paar rij[] = {{13,5},{14,2},{15,3},{13,1},{12,4},{10,3},{13,3},{9999,0} };
PrintVoluit(rij);
returnO;

}

zou de uitvoer zijn

13131313131414151515131212121210101013 1313

(einde van het tentamen)

PRC for E

52

8 Exercises
This chapter contains a sedion with exercises per week. It starts with an introduction on using developer studio.

As amindset, implement the asignment in each execise & if it where aspecfrom another company that is
paying us. Don't dotoo littl e, don’'t do too much.

If the exercise says “the output should be atable with the numbers nicey aligned”, alignment is part of the
assgnment. It is not all owed to skip that part.

If the exercise asksto make aprogram printing a table with the powers for 3, don’'t write a“better” program that
asks for anumber n and then prints a table with the powers of n.

8.0 Microsoft Developer Studio
In the exercises, we use Microsoft Developer Studio.

Using developer studio is quite complex the first time. It has a notion of aprojed. In essnce, aprojed isalist of
sourcefiles (in our projedsthat will be alist containing just one sourcefil€) that all need to be compiled and
linked together in order to crede the exeautable. A projed iswhat gets built and without a projed, developer
studio will build nothing.. In addition to projeds, developer studio has the notion of aworkspace A workspace
isaset of projeds. Thisisto accoommodate large development adivities where asingle gpli cation consists of
several executables working together. The workspace(the set of projeds) isthe unit of work in developer studio.
For example, there is awindow showing al files of al projeds that any file @n be changed easily.

8.0.1 Advise on setting up files, directories, workspaces and projects

We will now give an advise how to set up files, diredories, workspaces and projeds for solving the exercises
using Microsoft developer studio. These ae the steps.

* Step 1 Credeon anetwork drive (not on the harddisk of the PC we're working on) adiredory for PRC. We
would make that a subdirecory of the directory for SPR. We believeit iswise not to use caitalsin files
when working crossfil e systems and operating systems (the network drive might be aUnix file system).
Fire up Explorer and creae adiredory structure like the following™

J:\maarten\spr\prc
Step lisaone-time adion.

« Step 2 Wewould make aworkspaceper week**. Developer studio creaes a diredory per workspace Fire
up developer studio, chose File | New and then tab Workspaces. In the Location editbox enter the just
creaed dredory (or usethe®...” button to browse).

Thisis an example. Maybe the drive letter is different for you, maybe there ae alditional top-level diredories
(h:\home\studs\maarten\spr\prc).

3 Thisis amatter of taste. We auld make one workspacefor all exercises (but then the list of exercises would
be long), or we @muld make one workspaceper exercises (but that would mean many extra (workspace files). A
workspaceper week isaso easy for the teacher when aweek is realy for review.

PRC for E 53

Files | Projects “Workspaces | Other Documents |

If5] Elank Work space ‘wiorkspace name:

Location:
|i:\maarten\spr\prc J

| Cancel |

Next, type aname in the Workspace name editbox. We suggest weekl. Observe that developer studio
automagicaly extents the location!

Filez | Project: ‘Workspaces Other Documents
'FFE Blank “wWorkspace ‘warkspace name:
|week1
Location:
|i:\maarten\spr\prc\week'l J
Ok | Cancel |

PressOk to creae the blank workspacefor week.
Let’'schedk the diredory stucture and fil es creaed by developer studio in Explorer.

B ekt =]
File Edit Wew Favorites Tools Help 2!
) Mymaarkemispriprciweskl v d Go
Falders ® Date Madified Attribu. .,
= | maarten A 29-12-2005 17:22 &
= |2 spr 29-12-2005 17122 a
+ prc 29-12-2005 15:30 &
o weekl
v
< ¥
Type: Project Warkspace Size: 348 bytes 348 bytes % Localintranet

We seethat indeed, developer studio has creaed a diredory weekl in J:\maarten\spr\prc. In that direcory
we see“administrative files’ that devel oper studio has creaed to administer our weekl workspace Next
time we want to work on the weekL workspace it sufficesto File | Open fil e weekl.dsw (dsw = developer
studio workspacé or even double dick weeK.dsw in Explorer.

Every week, thereis a new set of exercises that we will group in aworkspace Hence, step 2 needsto be
exeauted every week.

» Step 3 We make aprojed per exercise. A projed is added to the workspaceof the week it belongs to. So,

make surg:5 we have the right workspaceopen (as creaed in step 2) and chose File | New and then tab
Projeds.

It isimportant to seledt Win32 Console Application.®®

% Asan dternative, right click weekl in the workspacewindow, and select Add rew Projec to Workspace

% This determines the kind of executable the project builds. We ae not going to write gplicaions that pop-up
windows, rather we make an old fashioned text (“command-line”) oriented application. Failingto seled the right
projed kind will result in errors during the buil d.

PRC for E 54

In the Location editbox enter the directory of the workspace(or usethe “..."” button to browse). Next, type a
name in the Projed name editbox. We suggest to start with the exercise number (so that exercises are sorted
in a mnvenient order) followed by a descriptive name (so that we a humansrecdl what it does). So, for
example, 1hello. Observe that developer studio once ajain extents the location!

New @g

Filezs Projects | Workspaces | Other Documents |

A9 ATL COM Appwizard Proiect name:

¢] Cluster Resource Type Wizard | Thello
g+ Customn Apphaizard .
&0 Database Project Losation: -
: DevStudia Add-in wizard j-smaartenszpriprciimesk 1 Thello J
= | SAP Extension YWizard
I akefile

{58 MFC Activex Controlyizard

MFC Appifizard [dll] * fdd to curent work space
S iFC Appafizard [exe) T
T Utility Project
Al Apelication J

EWin32 Congole Applization

O Create new work space

I — PR
U IR LAPTING-LITTR LUy
=T o Platforms:
E Win32 Static Library = D.lms
‘W|n32

(]4 | Cancel |

Make sure the Add to current workspaceis ®leded before aeding the projed by hitting Ok.
In the Wizard that pops up, just seled An empty projed and click Finish.

Let's chedk the diredory structure and files creaed by developer studio in Explorer.

% 1hello =1
File Edit ‘ew Favorites Tools Help]
) Back * T Search Folders) &

1 Mimaartenispriprciweekil 1hella ot “_} G0

Folders x Mame Size

= | maarken © _bebug
= _spr 1heﬂo.dsp SKB
_Jprc
= weekl
=
+ | Debug w

¢ » < >
4 objects (Disk free space: 146 GB) 29.6 KB % Local intranet

We seethat developer studio has creaed adiredory 1hello in J:\\maarten\spr\prc\weekl. In that diredory we
see a “administrative file” that developer studio has creaed to administer our 1hello projed. It has also
creded a Debug diredory that will be fill ed with temporary files as soon as we build this projed.

Every exercise must have its own projed (otherwise it can't be built), so step 3 must be repeaed for every
exercise.

* Step 4 We ad a csourcefile to aprojed. So, make sure we have the right projed open (as creded in step
3) and chose File | New and then tab Fil es.

Check the Location box (it should be ok), and chedk that the new file will be alded to the right projea (Add
to projed). Asfile type select Text File, and in the File name box enter the name of the csourcefile.

PRC for E 55

It isimportant to enter .c as extension. %’

‘Workspaces Other Diocuments |

Files | Frojects

r_ﬁ Active Server Page
2| Binary File
Bitmap File

v Add ba project:
|1hella

[&] CAC++ Header File

C++ Source File File name:

E% Curzor File |he||o.c

[@] HTML Page

EE lzaon File Location:)

f;: Macio File |J:'\maarten\spr\plc\week'l WThello J
Fesource Script

Resource Template
[Z1 501 Serint File
3 Test File

Cancel

o]

Finally, hit Ok.

8.0.2 The edit-compile-link-execute cycle in developer studio

Usually the main screen of developer studio is 9lit in threeparts: the workspace(top left), the elitor (top-right)
and the (build) log (bottom), as shown in the figure below. If one of those parts has disappeaed, use the View

menu to get them badk.
Y week1 - Microsoft Visual C++ - [J:\.. . week1\1hello\hello.c]
() file Edt View Insert Project Build Took Window Help -8 %
2 sRP 8 - e G R
NE #include- <stdio. k> -
. @ ‘Workspace 'week1" 1 project(s) int méini cvoid.)
- Ef 1hello files 1
- _3 Source Files --printf("Hello, -world!sn");
4 helle.c| } ‘return-0;
__| Header Files
| Resource Files
€ »
L |
2 4 ClassView _;}Fiie‘u‘iewl s e
= Configuration: lhello - Win32 Debug——————a
. Compiling. ..
hello.c
Linking. ..
lhello.ege — 0 erroris). 0 warning(s)
-
¥ [\, Build / Debug % FindinFiles 1 3 Finclin Files { 4 | | an
Ready Ln 3, Col1

The figure shows we have aworkspace(weekl), with a projed (1hell o), with afile (hell o.c).

3" Developer studio supparts more programming languages then just C, most notably C++. Failingto use the .c
extension might result in developer studio using the C++ compil er instead of the C compil er, which might lead

to unexpeded behavior.

PRC for E

56

* We can now edit any file. Seled it in the workspace(top-left) and type in the top-right window.
* We can then start the built (via Build | Build or F7).
» |f there aeno build errors, we can exeaute 1hell o.exevia Build | Exeaite (or ctrl-F5).

When simply running a program, use drl-F5 and not F5. The latter command pogs up a mnsole window,
runs the program, and when the program terminates, the console window is closed immediately. The former
command also pogs up a ansole and runs the program, but when the program terminates it asks “Pressany
key to continue”. Only after pressng any key, the console window is closed, given ustime to insped the
output generated by our program in the cnsole window.

v -olx

ello. world?
Press any key to continue

8.1 Exercises for week 1 — Program

8.1.1 1hello: Hello, world!

Read the sedion on setting wo files, diredories, workspaces and projedsin 8.0. Creae aweekl workspace a
1hello projed and afile hello.c with the famous “Hell o, world!” program (seeSedion 1.5). Typethe ¢ ©dein,
save dl (files, projed, workspace, build the program an execute it.

8.1.2 2errors: Bugs in the program
Addaseoond projed 2errors to weekl.. Add ae cfileto that projed (errors.c) and copy the foll owing program:
#i ncl ude <stdio.h>
int main(void)
printf("A line 1/n")
printf("Another line\n");
printf(‘Last line");

return;

}

This program has threesyntax errors. Buil d the program and see how the compiler reports them. Double dick
them to open the offending line in the cfile. Fix them.

The program also has a semantic error. Which one?

8.1.3 3random: Random errors

Add athird projed 3randomto weekK.. Add me cfile to that projed (randam.c) and copy and paste the cntents
of the first program (hell o.c). Make eat of the foll owing errors by itself and then run the program through the
compil er to seewhat happens.

» Deletethefirst line (#include) of the @ove program and seewhat the compil er does when we forget to
include stdio.

* Delete asemicolon ‘;’ and seewhat happens.

* Leaveout oneof thebraces'{* or ‘}’.

» Remove one of the parenthesis‘(* or ‘)’ next to the main function.
e Change mainin Main.

* Change printf in Printf.

» Delete random charaders or words.

PRC for E 57

e Addrandom charaders or words.

By simulating errors like these, we can learn about different compil er errors, and that will make our typos easier
to find when we make them for red.

Also try pressng F1, either with the cursor on some item in the alitor (else, prinf), or with the cursor on the
number of a compil er editor in the build log window.

8.2 Exercises for week 2 — Intermezzo on input and ou tput
Start with creding aweelk workspace(in addition to the weekl workspacs.

8.2.1 1powa3: Powers of three
Add aprojed 1pow3 to week. Add me cfile (pow3.c). It should look something like this.

#i ncl ude <stdio.h>

int main(void)

{

printf("%d"%d=%d", 3, 0,
printf("%d"%d=%d", 3, 1,
printf("%d"%d=%d", 3

printf("%d"%d=%d", 3

}
but the output should be & foll ows (note that the answers are aligned)

The powers of 3
370= 1
3= 3
3n2= 9
3N3= 27
3= 81
3"5= 243
3"6= 729
317=2187
3"8= 6561
379=19683

We must achieve that by modifying the format strings of printf (adding padding instructions to the placénolders
and adding escepe sequences).

8.2.2 2calc: Simple calculator

Add aprojed (2calc) to weel?, and creae ac file (calc.c) that implements asimple cdculator. The user should
be ale to enter two (floating point) numbers, and the program should print the product (*) and the quotient (/).

8.2.3 3powb: Powers of b

We ae going to improve the “ powers of three” program: we make it more flexible by using avariable. Add a
projed 3powb to week. Add me cfile (powb.c). It should look something like this.

#i ncl ude <stdio.h>

int main(void)

{
prntf("%d"%d=%d", b, 0, 1);
printf("%d"%d=%d", b, 1, b);
printf("%d"%d=%d", b, 2. b*b):
}

and it should have adedaration of b and a scanf for b. When the user runs the program and enters 3 for b, the
output of this program should be equal to the output of the original “Powers of three” program (including
aignment).

PRC for E 58

8.2.4 Aprintf: Printf errors

Add ae more projed (4printf) to week; we ae goingto investigate what happens if printf gets the wrong
values.

Let the main function contain these lines:

/I too many or too few numbers
printf("1=%d, 2=%d\n", 20, 30, 40);
printf("1=%d, 2=%d\n", 20);

/I too many or too few strings
printf("1=%s, 2=%s\n", "ape", "nut", "mary");
printf("1=%s, 2=%s\n", "ape");

/I mixing numbers and strings
printf("1=%d, 2=%d\n", 3, "ape");
printf("1=%s, 2=%s\n", "ape", 3);
How many errors do we get during compil ation? Why?

How many errors do we get when running? Why?

8.3 Exercises for week 3 — Expressions

8.3.1 1check: Expressions
Firgt, fill out the middle alumn of the foll owing table

Expresson Human answer Computer answer
17& 22
17|22
13& 15
13|15
13&& 15
OxA " OxC
20% 2
21%2
12710
127.0/10.0
9<<2
3<=5
3I=5
1(3<5)

5++

Next, crede aweekd workspace and a 1checkprojed with afile checkc. The ade should chedk the expressons.

#i ncl ude <stdio.h>
int main(void)
printf("%d & %d = %d\n", 17, 22, 17 & 22);

... all others too ...
return O;

}

PRC for E

58

Enter, compil e/link and execute this. Fill out the last column of the previous exercise and explain any
differences.

8.3.2 2powbp: powers of b improved

Add aprojed 2powbp. Add ane cfile (powbp.c). Improve the “ powers of b” program by adding a variable p and
ten assignments to p interspersed with the printf ’s. The goal isto only exeaute atotal of 9 multiplications.

Hint
int main(void)
{
pHNt("%d"%d=%d", b, 0, p);
p=p*b;
printf("%6dr%d=%d", b, 1, p);

}

8.3.3 3abc: abc formula
Let’s do some mathematics. Recll that a quadratic equation

ax>+bx+c=0
has two solutions
. = -b-+/b? - 4ac
2a
_—b++b’-4ac
2a

That is, if we have & equation
2¢-6x+4=0

2

then
a=2, b=-6, c=4

s0 that we have & lutions

_——6- (—6)2—4[?_81_+6—\/36—32_6—\/Z_6—2_ﬂ_1
. 202 4 4 4 4
< _——6+1/(—6)2—4E2E4_+6+\/36—32_6+\/Z_6+2_§_2
? 202 4 4 4 4

Conclusion: our equation has two solutions for x, namely 1 and 2

Let’s chedk that

2:12-6-1+4 = 2-6+4 =0

2:22-6-2+4=8-12+4=0
Write aprogram (projed 3alkc) that solves the quadratic equation. Below we'll find a skeleton. Note the second
line that includes the math library; we'll need it for the function sgrt that computes the square root of afloat.

PRC for E 60

#i ncl ude <stdio.h>
#i ncl ude <math.h>// We need this for sqrt()

int main(void)

{

float a;
float b;
float c;
float xi1;
float x2;

scanf(...a...);
scanf(...b...);
scanf(...b...);

x1=...;
X2=...;

printf("The solutions of %fx"2+%fx+%f=0 are",a,b,c);
printf("x1=%f", x1);
printf("x2=%f", x2);

}

Try to solve
2¢-6x+4=0

Next, try the foll owing two
x¥-9=0
X*+9=10

Why does the latter not work?

8.4 Exercises for week 4 — Statements
Crede aweeld workspace and make projeds for eat of the exercisesin this sdion.

8.4.1 1labcd: Improving abc formula
Creae aprojed labcd; it will be an improved version of the one of last week. Aswe may recdl, the equation

X*+9=0

caused arun-time aror. The problem is“under” the square roat.

[—R—
-b+\b®-4ac

2a

The formula mntains the square root of b?-4ac. Thisis cdled the discriminant and usually abbreviated to D. The
discriminant has the interesting property of being an indicaor for how many solutions the quadratic eguation
has.

X o=

* When D isnegative, we can not take the square root out of it, so there ae no solutions.
* When D ispositive, there ae two solutions.

* When D iszero, the square root of D is zero, so the formulareducesto x; ;= -b/2a, so bah solution are
equal.

Copy the @c program from last week, add a variable D that computes the discriminant and add if 'stesting D so
that the program prints sosmething along the lines of the foll owing threevariants

The equation ...x"2+...x+...=0 has 2 solution(s)
xX1= ...
X2= ...

PRC for E 61

The equation ...x"2+...x+...=0 has 1 solution(s)
X= ..

The equation ...x"2+...x+...=0 has 0 solution(s)

8.4.2 2powfor: Power of “for”

We have drealy written threeversions of the program that prints the power-of table. We're now going to write
the final one (2powfor):

* Keethevariablesb and p, and let b be input (scanf).
* Use afor loop(so there should only be one * in the whole program).
» Using apow function is forbidden.

» Addan extravariable n (input by the user via scanf) that denotes the number of rowsto print.

8.4.3 3updown: Updown game
Thereisasimple “game” for which the whil e loop makes more sense than afor loop.

Therules of the game ae & follows:
e pick a(positive integral) number
* whenitiseven, haf it
* whenitisodd multiply it by three ad add 1
* keep ondaingthis, unlessit is 1, then the game stops.

So, when we start with 9, we get the foll owing up/down sequence.

[9, 28, 14,7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Write aprogram (3updawn) that let’ s the user input one integer, and then prints out the up/down sequenceasin
the example aove (including the comma’s, spaces, bradkets and a single linefeed).

By the way, can you find a number for which this program does not stop at 1?

8.4.4 A4updowntab: updown table

Write aprogram (4updavntab) that prints atable of up/down sequences, started from 1 and ending at a number
that the user may input (scanf). For example, when the usersinputs 20, the foll owing table should be printed.

[2,1]

[3, 10, 5, 16, 8, 4, 2, 1]
[4,2,1]

5. 16, 8, 4, 2, 1]

[6,3,10,5, 16,8, 4, 2, 1]

[7,22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

8. 4, 2, 1]

[9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[10, 5, 16, 8, 4, 2, 1]

[11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[12, 6,3, 10, 5, 16, 8, 4, 2, 1]

[13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

[14, 7, 22,11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1]

[16, 8, 4, 2, 1]
[17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

[18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[20, 10, 5, 16, 8, 4, 2, 1]

8.5 Exercises for week 5 — Data types
Creae aweelb workspace

PRC for E 62

8.5.1 1ltoosmall: Too small
Write aprogram (1toosmall) that reads (scanf) 10 integers and then prints those that are small er than the last one
(so we nedl an array to storethem al).

For example, when the users inputs the foll owing 10 numbers:

553127 31227 22112

the last oneis 12, so the output is

3722

8.5.2 2dicel: Dice 1

Write aprogram (2dicel) that repeaedly reads (scanf) the number of dice® eyes until the stop command is
given (the number 0). Next, the program prints a table of how often ead of the numbers occurred.

So,oninput 6,1, 2, 3,3,1,6,4,3,1, 3,6, 4, 0 the program prints

Note: only use one aray

i nt dice[6];

8.5.3 3dice2: Dice 2

Write aprogram (3dice2) that repeaedly reads (scanf) two numbers (the number of eyes on two dices) urtil the
stop command is given (either of the two numbers smaller than 1 or greder than 6). Next, the program prints a
“graph” of how often each sum (2..12) occurred.

The output should look like below (where eab # stands for 1 occurrence).

2 H#t#
3 HHHH
A HHEHHIH
5 #HiHE
6 #HHBHHI R
T BRI
8 HHHHIHHIHHE
O HHHEHIHHIHE
10 #e##H#HHIHR
11 ###H#
12 ##

8.5.4 4sortdate: Sort dates

Write aprogram (4sortdate) that has an array of 5 dates (a month, and a day struct). The dates must be read
(scanf), then sorted (oldest date first) and finally printed.

Hint: the sort algorithm from the theory can be used with one modficaion: the comparisson for numbers

i T (afil<alp])

should be changed in a cmparisson for dates. When is one date small er than the other? When the mornth of the
oneis smaller than the month of the other, or, in case the months are equal, when the day of the one issmaller
than the day of the other.

38 The Dutch word for “dice” is “dobkelsteen” .

PRC for E 63

8.6 Exercises for week 6 — Functions
Crede aweelé workspace

| It is forbidden to use global functions or global arrays for the sole purpose of passng parameters.

8.6.1 1max: Max

Write afunction max, that has two integer parameters and returns the biggest of them. Write aprogram (1max)
that reads threeintegers (in main) and then prints the biggest one using the just devel oped max function. Of
course, the main function does not have any if itself either.

8.6.2 2digits: Number of digits

Write afunction NumDigits, that takes a (positive) integer and returns the number of digits (in its dedmal
notation). So passng

8530

should result in 4 (hint kegp on dividing by 10 urtil it is 0). Write aprogram (2digits) that kegps on reading
integers and printing their number of digits until a non-positive integer is entered.

8.6.3 3pos: Pos

Write afunction int Pos(int v, int a[], int size), that searches an array int a (0..size-1) for an occurrenceof v. If v
ocaursin a, itsindex should be returned, if v does not occur in a, -1 should be returned.

Write aprogram (3pos) that has global array nums with an initiaizer, function Pos and main. Function main
should let the user input a number and then search for that number in nums using Pos. The result should be
printed.

As an example, assumethe aray isO, 1, 4, 9, 16, 25, 36, 49, 64. When the user enters 25 the program prints 5,
when the user enters 40, the program prints —1.

8.6.4 4days: Days
The foll owing function returns the number of days sincethe “birth of Jezus’, that is snce January 1% 0001

i nt NumDaysSince0001_01_01(int y, int m, int d)
{

int n;

i f(m<3){m+=12;y--;}

n=d - 1+ (153*m+3)/5 - 92 - 306 +365*y + y/4 - y/100 + y/400;
return n;

}
Y ou must copy this function (NumDaysSinceD001_@_01) unmodified to your program.

Write an extra function NumDays that does the same as NumDaysSnceD00L_01_01, but takes a struct date (asin
5.2) instead of threeints. Let NumDays cal NumDaysSnceD001 01 01

Thirdly, write afunction DaysPassed that takes two struct date's, and returns the number of days between the
second date and the first (this returns a negative number if the first date islater than the seaond).

In main have two date variables be entered by the user, and print the number of days between them. Call the
program 4days.

PRC for E 64

9

Mistakes

9.1 Mistakesin C
This chapter lists sme mmmon mistakesin C programs.

Using the wrong charader case — case mattersin C, so we canot type Printf or PRINTF. It must be printf.
Printf("Ape"); printf("Ape");

Forgettingto usethe & in scanf.
scanf("&d", i); scanf("&d", &);

Type mismatch in adual parameter and the format in printf or scanf.
printf("% s", 12) printf("% i"12)

Too many or too few parameters foll owing the format in printf or scanf.
printf("%d and %d", a); printf("%d and %d", a ,b)

Forgettingto dedare avariable before usingit.

int Sum(iintn) int Sum(intn)
int i;
int s=0; int s=0;
for(i=0; i<n; i++) for(i=0; i<n; i++)
s+=1i; s+=i;
} }
Putting = when we mean = =in an if or whil e statement.
if(x =0) if(x ==0)

Usinga= = bonfloats.

floata=...; float a=...;
float b- ...; float b- ...;

float epsilon= 1E-9;
ifta ==b) if(abs(a-b) <epsilon)

Forgetting to increment the cunter inside the while loop; thisresultsin an infinite loop (the loop never
ends, so the program never ends).

inti=0; inti=0;
int s=0; ints=0;
while(i<n’) while(i<n)
{
s+=1i; s+=i;
} i ++
}
Acddentally putting a ; at the end of afor loop a if-statement so that the for statement has no effed.
for(x=0; x<10; x++) ; for(x=0; x<10; x++)
printf("%d\n",x); printf("%d\n",x);

Forgetting braces after if, whil e or for.

PRC for E 65

inti=0; inti=0;

ints=0; ints=0;
while(i<n’) while(i<n’)
s+=1; {
i++; s+=1i;

i++

}

» Chasno range checking, so if weindex past the end of the aray, it will not tell us about it. It will eventually
crash or give us garbage data. The most common instance of this error isaccessng an array at its upper
bound.

int a[3];
inti= a[3] /I only a[0], a[1] and a[2] exist

e A function cdl must include () even if no parameters are passed. For example, C will accet x=sin; , but the
cdl will not work as expeded. The memory addressof the sin function wil | be placed into x instead. We
must say x=sin(3);.

» Using the/ operator with two integers will often produce an unexpeded result (no remainder), so think
about it whenever we useit.

9.2 Mistakes in Developer Studio
» Forgetting to seled Win32 Console Application. Thisresultsin an error saying _winamin_ does not exist.

» Forgetting to spedfy a.c extension. Thisresults in studio chosing the .cpp extension (for ¢ plus plus) which
has an extended syntax with resped to c.

(end of bock)

PRC for E 66

