
Programming in C
an introduction

PRC for E

Maarten Pennings

Version 0.5 (2007-12-31)

PRC for E 2

0 Preface
This book explains the C programming language. It assumes no programming knowledge. The reader is
supposed to be somewhat famili ar with binary arithmetic. Some knowledge of operating a computer is required
in order to be able to use a compiler, which is needed for doing the exercises at the end of this book.

0.1 Position o f this modu le (PRC for E)
This book was specifically written to support module 3 (PRC) for the trajectory SPR (system programmer) for
Electronics students. The first module of SPR (ICM) presents sufficient background knowledge on signed and
unsigned integers and their operations (addition, shifting, etc). The PRC module lays the groundworks for the
last SPR module LLP (low level programming). In LLP the C programming language is used on a small
microcontroller.

The standard PRC course (as opposed to the PRC for E that this book is written for) assumes previous
programming experience. As a result, the standard PRC course does not explain what a variable, type,
expression, statement or function is, it merely tells how to write them down in C. The PRC for E course does
explain what they are, but as a consequence, it skips some of the more advanced topics. Most notably, PRC for E
(this book) does not explain pointers.

Fortunately, pointers are not used in LLP. So PRC for E is sufficient in that sense.

However, those who want to program in C, should learn pointers. C without pointers is like driving a car in first
gear only.

0.2 Abou t the usage of English
We understand that for Dutch students, English is harder than Dutch. We therefore considered writing this book
in Dutch. However, computer science is an English dominated profession. Most computer languages are English
based (‘ function’ , ‘while’ , ‘ return’ , ‘ include’). Help files are English, most books are English, most forums on
the internet are English. This book was assembled from various sources, all were in English.

So, we decided to write this book in English (but we did feel this justification was needed).

0.3 Structure
This book is tailored towards a module of 7 weeks. It consists of 6 chapters (chapters 1 to 6), one for each week.
Chapter 7 (week 7) is for practicing an old examination. At the end of the book (chapter 8), there is an additional
chapter with exercises, one set of exercises for each week (8.1-8.6). The class time will be two hours on the
theory and two hours on the exercises per week.

The course PRC for E is concluded with a written examination of 100 minutes. The examination is an “open
book examination” : it is allowed to bring any kind of written material to the examination (this book, exercise
print-outs, personal notes) and even a calculator (but a plain one, not C programmable one).

In addition to passing the examination all exercises must be approved by the teacher.

0.4 References
http://computer.howstuffworks.com/c.htm – has nice visual demos
http://www.le.ac.uk/cc/tutorials/c/ – good examples
http://www.cprogramming.com/tutorial/c/lesson1.html
http://www.its.strath.ac.uk/courses/c/
http://cplus.about.com/od/beginnerctutoria1/l/blctut.htm
http://alpha.uhasselt.be/~gjb/MIT-C/slides/ – example programs (in dutch)

0

PRC for E 3

0.5 Table of contents
0. Preface 2

0.1 Position of this module (PRC for E) 2
0.2 About the usage of English 2
0.3 Structure 2
0.4 References 2
0.5 Table of contents 3
0.6 Revision history 4

1. Program 5
1.1 What is the C programming language? 5
1.2 What is a programming language anyhow? 5
1.3 The edit-compile-link-execute cycle 6
1.4 Building 8
1.5 Overview of the “ Hello, world!” program 8
1.6 Functions 9
1.7 Rest of this book 10

2. Intermezzo on input and output 11
2.1 Introduction into strings 11
2.2 Strings 11
2.3 Printf 12
2.4 Variables 14
2.5 Scanf 16

3. Expressions 18
3.1 Introduction 18
3.2 Types 19
3.3 Literals and constants 20
3.4 Operators 21
3.5 Outside the scope of this course 25

4. Statements 26
4.1 Statements 26
4.2 If-statement 26
4.3 While loop 29
4.4 For loop 31
4.5 The semicolon 33
4.6 Outside the scope of this book 33

5. Data types 34
5.1 Arrays 34
5.2 Structs 36
5.3 Combinations 37
5.4 Storing standard types 38
5.5 Storing a struct 40
5.6 Outside the scope of this course 41

6. Functions 42
6.1 Divide and conquer 42
6.2 Returning results 44
6.3 Passing parameters 45
6.4 Passing arrays 45
6.5 Scope 46
6.6 Function prototypes 47

7. Old examiniations 48
7.1 Trial for 2005 48
7.2 Real examination 2005 50

8. Exercises 53
8.0 Microsoft Developer Studio 53
8.1 Exercises for week 1 – Program 57
8.2 Exercises for week 2 – Intermezzo on input and output 58
8.3 Exercises for week 3 – Expressions 59
8.4 Exercises for week 4 – Statements 61
8.5 Exercises for week 5 – Data types 62
8.6 Exercises for week 6 – Functions 64

9. Mistakes 65
9.1 Mistakes in C 65
9.2 Mistakes in Developer Studio 66

PRC for E 4

0.6 Revision history
0.0.1 2005 oct 10 Analysing existing PRC (1st meeting) 1 hr
0.0.2 2005 nov 14 Scoping PRC for E (2nd meeting) 1 hr
0.0.3 2005 nov 21+26 Inventorising existing books (visited bookshops, internet) 2 hr
0.0.4 2005 dec 24 Scanning through the websites Lennart de Graaf selected. 2 hr
0.0.5 2005 dec 28 Written chapter ‘Program’: what is C, what is programming language, edit-comp-link-exec. 2 hr
0.0.6 2005 dec 29 Added to chapter ‘Program’: using dev studio, print to screen, exercises for week 1 8 hr
0.0.7 2005 dec 30 Written chapter ‘Expression’ : including exercises. 7 hr
0.0.8 2005 dec 31 Written chapter ‘Statements’ : only theory, except the loops. 3 hr
0.0.9 2006 jan 1 Added to chapter ‘Statements’ : loops and exercises. 3 hr
0.0.10 2006 jan 2 Written chapter ‘Data types’ : arrays only theorie. 2 hr
0.0.11 2006 jan 4 Added to chapter ‘Data types’ : structs, exercises. 2 hr
0.1 2006 jan 4 Written chapter ‘Functions’ : theory and exercises. Mailed to Lennart and Agnes for review. 4 hr
0.1.1 2006 jan 29 Studied comments Lennart de Graaf on version 0.1 1 hr
0.1.2 2006 jan 30 Splitoff printf and scanf in new chapter ‘ Intermezzo on input and output’ (comments Lennart) 2 hr
0.1.3 2006 jan 31 Added storage size and bit patterns (comments Lennart de Graaf) 3 hr
0.1.4 2006 feb 1 Added struct storage (comments Lennart de Graaf) 3 hr
0.2 2006 feb 2 Re-allocated exercises (now that chapters are reorganized), added chapter ‘Preface’ , TOCs. 3 hr
0.2.1 2006 feb 4 Reviewed the whole document myself. 2 hr
0.2.2 2006 feb 5 Reworked my review comments 2 hr
0.2.3 2006 feb 5 Reworked comments of Marc Ridders 1 hr
0.3 2006 feb 5 Reworked review comments of Frans Meulenbroeks and published V0.3 for year 2005-2006. 0 hr
0.3.1 2006 dec 14 Reworked comments from last year (ch 0..3), added logo, added build figure, added program figure 4 hr
0.3.2 2006 dec 16 Reworked comments from last year (ch 4..5) 2 hr
0.3.3 2006 dec 17 Reworked comments from last year (ch 6..9) added header/body figure, examinations, mistakes 5 hr
0.4 2006 dec 17 Converted to pdf and published as V0.4 for year 2006-2007. 0 hr
0.5 2007 dec 31 Small corrections, added string layout, added passing arrays as param 2 hr

67 hr

PRC for E 5

1 Program
This chapter explains the origin of the C programming language. It explains what a programming language is,
what a program is, and that a programmer needs to edit, compile, and link a program before it can be executed.
Near the end of this chapter we discuss the famous C program “Hello, world!” , so that we can start writing
simple programs.

1.1 What is the C programming langu age?
The C programming language was developed at Bell Labs during the early 1970's. Quite unpredictably it derived
from a computer language named B and from an earlier language BCPL. The earlier versions of C became
known as Bell Labs C or K&R C after the authors of an earlier book, "The C Programming Language" by
Kernighan and Ritchie. As the language further developed and standardized, a version know as ANSI (American
National Standards Institute) C became dominant.1

As a programming language, C is rather like Pascal or Fortran. Values are stored in variables. Programs are
structured by defining functions. Program flow is controlled using loops, if-statements and function calls. Input
and output can be directed to the terminal or to files. Related data can be stored together in arrays or structures.
Of the three languages, C allows the most precise control of input and output. C is also rather more terse than
Fortran or Pascal. This can result in short efficient programs, where the programmer has made wise use of C's
range of powerful operators. It also allows the programmer to produce programs which are impossible to
understand. The C language also offers unparalleled pointer computation. Undisciplined use of pointers can lead
to errors which are very hard to trace. This course does not deal with pointers (which actually means that a very
important area of C is not covered).

C was originally closely coupled to the Unix operating system. One of the positive aspects of knowing C is that
many other computer languages have been derived from it. There is an object oriented member in the C language
family (C++), the new Microsoft flagship C# is based on it, and even the Sun language Java is heavily inspired
by C’s syntax and semantics. So knowing C helps in starting with many other languages. However, those
languages may differ considerably from C on a conceptual level, so understanding C helps, but it is not a free
ticket.

Although C is relatively old, it is still one of the most used programming languages.2 For example the Linux
kernel and nearly all tools around it are written in C. Most embedded systems are written in C

1.2 What is a programming language anyhow?
C is a computer programming language. This means that we can use C to create a list of instructions for a
computer to follow. C is one of thousands of programming languages currently in use. The word language
suggests letters, words, sentences that follow rules to be correct. And indeed, the C programming language, like
all computer languages, is very strict and unforgiving about errors (unlike humon longuoges where we con
reploce oll o’s by o’s without losing our reoders, they do get irritoted though -). The aspect of forming correct
“sentences” is called the syntax of a language.

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello, world!\n");
 return 0;
}

1 Unfortunately, many compilers claim to be ANSI compliant but aren't fully or they have specific extensions.
2 Maybe, it is even the most popular language (see e.g. http://www.dedasys.com/articles/language_popularity.html).

1

PRC for E 6

Above, we see an example of a C program. There is an impressive amount of syntactic details that must be
correct (we can not leave out any of the characters " * ; { [(< , # or the program will not work). We will be
learning in this book how to write such programs, and we will l earn what they mean. The latter is known as the
semantics of a language.

The following English sentence has several syntax errors: sUGAR arre sweet.
The following is syntactically correct (and has a sensible meaning or semantics): Sugar is sweet.
The following is syntactically correct but its sematics are dubious: Sugar is bitter.

By the way, in addition to the strict syntax in C there is also a notion of style (“coding conventions”). For
example, all programmers agree that the lines between { and } should be indented, i.e. started with a couple of
spaces. But this is a matter of taste, not part of the C syntax. Being taste, the result is that there are groups of
people fighting over which coding convention is best (should indentation be with 2 or 4 spaces? Where should
the { be, etc). Don't fight, chose a style and stick to it.3

C is a so-called a compiled language4. This means that once we write our C program, we must run it through a C
compiler to turn our program into an executable that the computer can run (execute). The C program is the
human-readable form, while the executable that comes out of the compiler is the machine-readable and
executable form (i.e. a list of CPU instructions). What this means is that to write and run a C program, we must
have access to a C compiler.

This is f i le he l lo .c.
I t is a C source code f i le ,
en tered by you us ing an

ed i to r (such as notepad) .

#include <stdio.h>

int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

DA 50 F3 00 CB 45 20 66 7F 00
3B 26 11 10 0A 2F 30 0C B4 52
64 67 F0 03 B2 63 2D A5 03 F5
30 00 2C B4 52 10 11 61 67 F1
04 08 3E BE 25 61 11 00 A2 F3
00 CB 45 26 46 F4 09 09 3B 26
62 DA 50 36 F5 3C D0 2B 45 2A

With a C comp i le r
(and l inker) he l lo .c is
compi led to he l lo .exe.

This is f i le he l lo .exe.
I t is a l is t of instruct ions

(i .e . numbers) for a spec i f ic
CPU (such as a pen t ium) .

1.3 The edit-compile-link-execute cycle
Developing a program in a compiled language such as C requires at least four steps:

1. editing (or writing) the program

2. compiling it

3. linking it

4. executing it

1.3.1 Editing
We write a computer program with words and symbols that are understandable to human beings. This is the
editing part of the development cycle. We type the program directly into a window on the screen and save the
resulting text as a separate file. This is often referred to as the source file (we can read it with the type command
in a DOS box5 or the cat command in Unix). The custom is that the text of a C program is stored in a file with
the extension .c.

3 The author uses the “Phili ps Consumer Electronics coding conventions” because that’s engraved in his mind.
4 Another big class of languages are the interpreted languages (e.g. JavaScript on web pages).
5 Where DOS box is mentioned, we not only mean command.com but also the command interpreter cmd.exe that
comes with Windows NT/XP.

PRC for E 7

1.3.2 Compiling
We cannot directly execute the source file. To run on a computer system, the source file must be translated into
“binary numbers” (instructions) understandable to the computer's CPU6 (Central Processing Unit, for example,
the 80x86 microprocessor). This process produces an intermediate object file – with the extension .obj or .o
(which stands for object file).

1.3.3 Linking
The first question that comes to most peoples minds is Why is linking necessary? The answer to this is that most
programs are assembled from multiple source files each implementing parts of the resulting application. These
parts need to be “ linked” together.

Quite often, there is a set of stable parts implemented in several source files. These source files are compiled
once and packaged together in a so called library (there is no magic in a library; it is much like zipping several
.obj files into one .lib file). A normal way of working is to compile our .c files into .obj files and link those,
together with the .obj files in (one or more) .lib files.

When we think this complex structure is only applicable for large applications, and not for our simple hello-
program, we’re unfortunately wrong. The reason is that many compiled languages come with standard library
routines. Theses routines are written by the manufacturer of the compiler to perform a variety of tasks, from
input/output to complicated mathematical functions (for example, most CPUs don’ t have an instruction to do a
sin – sinus of an angle – rather the compiler adds a routine that computes the sinus using multiplication, addition
etc). In the case of C the standard output function (the printf to put text on the screen) is contained in a library
(stdio) so even the most basic program will require a library function and hence a linking step.

After linking the file extension is .exe (which stands for executable files). On unix, executables usually don't
have an extension, and in embedded systems the resulting executable could be a .hex file (an actual memory
image)7.

help.lib

part1.objpart1.c

part2.c part2.obj

compi le

compi le

help1.obj

help2.obj

prog.exel ink

1.3.4 Executing
Thus the text editor produces .c source files, which go to the compiler, which produces .obj object files, which
go to the linker, which produces an .exe executable file. We can then run the .exe file as we can run any other
application: simply by typing their names in the DOS box or by using a double-click in Windows Explorer.
Note, that an .exe file is not only a list of instructions for the CPU; it usually starts with a header which instructs
the loader of the operating system where and how to load the instructions (e.g. relocatable segments, dll's).

6 This also means that when you want to run your C program on another CPU, you have to use another C
compiler. In pactice you quite often also have to addapt your source files (“porting”).
7 For example, the Keil compiler for the 8051 CPU (used in LLP) generates hex files.

PRC for E 8

1.4 Building
The term building is used for compil ing and linking together. Compilers and linkers are always delivered
together, and most compilers also link. Or should we say that there is a small third program that actuall y first
starts the compiler and then the linker? Very confusingly the term C-compiler is also used for the compiler and
linker together.

That's why it suffices to type

gcc part1.c part2.c -o myapplication.exe

in Unix.

There are many C compilers under Windows, including gcc. On windows, a likely candidate is the Microsoft C
compiler integrated with Microsofts Developer Studio. Developer Studio is a so-called IDE or integrated
development environment. This means that the whole edit-compile-link-execute cycle takes place within one
environment. This environment not only guides the compile and link phases, but it even includes an editor and an
environment for executing the compiled application. The latter is very convenient for debugging; running a
program under “supervision” with the aim to find errors (or “bugs” as they are commonly referred to).

See the exercises for an introduction in using Microsoft Developer Studio.

1.5 Overview of the “ Hello, world!” program
Let us start with the famous “Hello, world!” program that every book on C starts with.

#include <stdio.h>

int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

Let's walk through this program to see what the different lines are doing. Of course the real details follow in later
chapters.

The “Hello, world!” program starts with #include <stdio.h> . This line includes the “standard I/O library” 8 into
our program. The standard I/O library lets us read input from the keyboard (called “standard in”), write output to
the screen (called “standard out”), process text files stored on the disk, and so on. It is an extremely useful
library. C has a large number of standard libraries like stdio, including libraries to manipulate date and time,
math libraries, string libraries. A library is simply a package of code that someone else has written to make our
li fe easier, in this case the stdio library comes with the compiler.

The line int main(void) declares the main function9. Every C program must have exactly one function named
main somewhere in the code. At run time, that is, when the program is executing, execution starts at the first line
of the main function.10 Typically, C programs contain many functions in addition to main. In one of the last
chapters of this book we learn how to write functions ourselves.

In C, the { and } symbols mark the beginning and end of a block of code. A block of code contains several
statements. In this case, the block of code makes up the so-called body of the main function. It contains only two
statements (printf and return).

The first statement, printf , sends output to standard out (e.g. the screen). The portion in quotes is called a string
(a series of characters). For printf, the string describes the data to be printed. The string contains li teral
characters such as ‘H’ , ‘e’ , ‘ l’ , etc. It may also contain escape characters, for example carriage returns (\n).

The main function must return a number (an int or integer) to its caller (the operating systems loader) to signal
succesful (or erroneous) termination. This is a requirement from ANSI C, and can be seen from the header: int

8 Actually, it doesn’ t include the library itself, but the header file describing the library.
9 According to the ANSI C specification there is only one alternative: int main(int argc, char *argv[]).
Unfortunately, many compilers allow many other alternatives like int main(). Don’ t use these if you care for
portable code or standards.
10 That is, after the loader of the operating system has loaded the executable, it calls the main function.

PRC for E 9

main(void). The last line: return 0; causes the function to return, passing an code of 0 (no error) to the operating
system.

By the way, the C compiler is rather indifferent about whitespace (not to be confused with syntax for which it is
very picky). Whitespace is the computer-science term for layout (spaces, tabs, new lines), so the above program
could also be rendered as:

include <stdio.h>
int

main(
 void) { printf
("Hello, world!\n")
 ; return 0
 ;}

but we wouldn’ t have many friends. On the contrary, source code should follow strict coding conventions to
enhance readabili ty, and comments should be added where needed. The old syntax for comments is to put them
between /* and * / but the latest ANSI C also allows comments from // till the end of the line.

#include <stdio.h>

// It is good practice to start every function with an explication of what it does.
int main(void)
{
 printf("Hello, world!\n");
 return /* This comment is placed very strangly, but syntacticly ok */ 0;
}

1.6 Functions
Functions are one of the most important concepts in many programming languages, and C is no exception to this
rule. Even in the simple program discussed in this chapter, there are already two functions! The first we
encountered was main. Every C program must have a main; it defines which statements to execute upon startup
of the program.

The second function was a bit hidden. But the first statement of main is actually a call to the function with the
name printf. The function printf is defined (its body is implemented) in the standard I/O library (that’s why we
need the #include on the first line).

We can recognize a function definition from its body in braces { } :

…bla… SomeFunctionName(… bla…)
{
 some statements
}

and we recognize a function call from its actual arguments in parenthesis ():

…
SomeFunctionName (…arguments…);
…

Functions define a series of statements to perform. A function groups these statements and gives them a name
(the function name). One could say that functions are like black-boxes that can perform some trick. The trick is
performed by calli ng the function.

The first line of the definition (…bla… SomeFunctionName(…bla…)) defines the interface or header of the
function: its name, what goes in and what comes out.

A well known example of a function available in C is the sin function. It has some clever (mathematical) trick to
compute the sinus of a number. It is defined once (in the math library), and each time we need it, we simply call
it. For this we need to know its name (sin) and that a number goes in (sin(3.14)) and a number comes out (“ is
returned”): 0.001592652. Usually, the C compiler comes with manuals (Unix: manpages; Windows: help files –
F1) that explain all functions in all li braries that come with the compiler.

We may write our own functions. We will see how to do that in Chapter 6.

PRC for E 10

1.7 Rest of this boo k
This chapter gave a outside-in overview of what a program in C looks like. The rest of this book will give an
inside-out detaling of C. We start with the smallest items: expressions, which are used in bigger expressions,
which are used in statements, which are used in bigger statements, which are used in functions, which are used in
programs.

The figure below shows a program with its nested items.

int func(int a)

{

 int x;

 x= 3 + 5/a ;

 if(x <= 0)

 {

 x= -x * 2 ;

 return x ;

 }

 return x-a;

}

int main(void)

{

 int a;

 scanf("%d", &a);

 return func(a) ;

}

func t ion

s ta tement

express ion

PRC for E 11

2 Intermezzo on inpu t and ou tput
In order to be able to do some practical work, it is very convenient to know how to put characters on the screen.
We’ve seen that printf takes care of this, but we need to understand a bit more about printf before we can
effectively use it in our programs. To make our programs even more attractive; we’ ll have a look at scanf, which
allows us to input something into our program from the keyboard.

Before we start with printf, we introduce strings; before we touch on scanf, we introduce variables.

2.1 Introdu ction into strings
As we will see later, the C programming language knows about different kinds of values (this is commonly
referred to as types). The two most prominent ones are numbers and strings. We have seen examples of both.
The statement

return 0;

contains the number (to be more precise, the integer) 0, and the statement

printf("Hello, world!\n");

contains the string "Hello, world!\n".

The notion of a string of characters is common in nearly all programming languages, but its notation is not
trivial. The author of this book once worked on a university, which had a ‘no bike parking’ sign near the
entrance reading:

Note the quotes, which were really present – presumably the guy ordering the sign wrote a letter saying:
Please make a sign with the text “no bike parking” .

It makes sense to have quotes to separate the text of the letter from the text of the sign, because otherwise the
following letter gives an ambigous order to the sign manufacturer:

Please make a sign with the text no bike parking before 12am.

Which one would it be:
Please make a sign with the text “no bike parking” before 12am.
Please make a sign with the text “no bike parking before 12am”.

On the other hand, it is not enough to agree that all quotes should be stripped, because then it would be
impossible to order a sign with

2.2 Strings
A string is a sequence of characters enclosed in " (double quotes). The C compiler stores all characters of the
string (but not the enclosing quotes), and it always appends a 0 (null) for technical reasons beyond the scope of
this book. So,

• "APE" is a string consisting of 3 characters 'A', 'P', and 'E'
 A P E null
that is, ascii codes 65, 80, and 69
 65 80 69 0

2

“ no b ike parking”

no “ wrecks” please

PRC for E 12

• "mary" is a string consisting of 4 characters.
 m a r y null

• "He said 'hi'." consists of H, e, space, s, a, i, d, space, single quote, h, i, single quote, dot.
 H e space s a i d space ' h i ' . null

But suppose we want to have

He said
--hi

on the screen on two lines. How would we do that? Unfortunately, C does not allow a linefeed embedded within
a string:

printf("He said
--hi");

There is this convention that ascii code 10 causes a linefeed. And C has the notion of escape sequences to embed
those “unprintable” characters in a string. This is done by using the escape character \ followed by x (for
hexadecimal) followed by hexadecimal digits. So

printf("He said \x0A--hi");

does the job. It maps to the following sequence in memory

 H e space s a i d linefeed - - h i null

or, when using ASCII notation

 72 101 32 115 97 105 100 10 45 45 104 105 0

It goes without saying that

printf("\x41\x42\x43");

prints

ABC

since hex 41 is the ascii code for A (and 42 is B and 43 is C).

However, since a linefeed is so popular, and \x0A so unreadable there is another shorthand: \n (n for newline).
We have already seen \n in the hello world example. This means that

printf("He said \n--hi");

also does the job.

The table below lists other popular shorthands

\\ to embed a backslash in a string (an escaped backslash)
\" to embed a double quote in a string
\' to embed a single quote in a string (or in a character, see next chapter)
\b to embed a backspace in a string
\n to embed a linefeed in a string
\t to embed a tab in a string
\0 to embed a null character in a string (don’t do this!)
\x nn to embed hexadecimal character nn in the string

Recall that these escape sequences are part of the syntax of the C programming language; they have nothing to
do with printf.

2.3 Printf
The job of printf is to put characters on the screen (actually, to standard-out). When call ing printf, we must pass
at least one string, the so-called format string. The format string holds a “ template” of what to print.

Let's look at some variations to understand printf better. Here is the simplest printf statement:

printf("Hello");

PRC for E 13

This call to printf has a format string that tells printf to send the string "Hello" (that is, the characters H, e l, l,
and o) to standard out. Contrast it with this:

printf("Hello\n");

The second version sends the string "Hello\n", that is H, e, l, l, o and a linefeed (ascii 10) to standard out.

printf("H\ne\nl\nl\no\n");

Prints Hello “vertically” .

H
e
l
l
o

The following line shows how to output an integer using printf.

printf("%d", 10);

The %d is a placeholder (for integers to be printed decimal) that will be replaced by 10 when the printf statement
is executed. Of course it would be more logical to say

printf("10");

but we can also say

printf("%d", 5*(100-32)/9);

Often, we will want to embed the calculated number within some other words. One way to accomplish that is
like this:

printf("The temperature is ");
printf("%d", 5*(100-32)/9);
printf(" degrees celsius\n");

An easier way is to say this:

printf("The temperature is %d degrees celsius\n", 5*(100-32)/9);

We can also use multiple %d placeholders in one printf statement:

printf("Note: %d degrees fahrenheit is %d degrees celsius.\n", 100, 5*(100-32)/9);

This prints

Note: 100 degrees fahrenheit is 37 degrees celsius.

It is now hopefully clear why the format string is a template, it is after all , a string with %d holes in it that still
needs to be fill ed out.

In addition to %d for decimal printing we can also use %x for hexadecimal printing (or %X for uppercase
hexadecimal). There is also %c for character printing (treating the number as an ascii value). Thus

printf("[%d,%x,%X,%c]", 75, 75, 75, 75);

prints

[75,4b,4B,K]

The %f is for printing floating point numbers, and there is also a placeholder for string (%s):

printf("He said '%s' and %f!\n", "Hi", 2.5);

which prints

He said 'Hi' and 2.500000!

This is sometimes handy because there are several extra tricks with printf, for example padding.

PRC for E 14

printf("A123456789\nB %5s\nC %6d\n", "ape", 54);

pads the ape string with spaces until it is 5 characters long and the 54 integer with spaces until it is 6 long:

A123456789
B ape
C 54

For more details on printf tricks look in the developer studio help file or internet.

In the printf statement, it is extremely important that the number of placeholders in the format string
corresponds exactly with the number and type of the values following it. For example, if the format string
contains three %d operators, then it must be followed by exactly three integers.
Faili ng to do so might crash the program.

We have seen that the C language uses the \ as escape character in strings (in order to get some special characters
embedded in a string). In order to embed the string escape character \ itself in a string it needs to be escaped: \\.
Similarly the printf routine has chosen to use the % as escape character in format strings (in order to get holes
embedded in the format string). In order to embed the format string escape character % itself in a format string it
needs to be escaped: %%. So

printf("There is a reduction of %d%%.\n", 25);

which prints

There is a reduction of 25%.

2.4 Variables
As a programmer, we will frequently want our program to "remember" values (for later use). For example, if our
program requests a value from the user, or if it calculates a value, we will want to remember it somewhere so we
can use it later. The way our program remembers things is by using variables. For example:

int b;

This line says “ I want to create some room called b that is able to hold one integer number” . A variable has a
name (in this case b) and a data type or type for short (in this case int, an integer). We can store a value in b by
saying something like:

b= 5;

We can use the value in b by saying something like:

printf("%d", b);

But we can also use b in an expression:

printf("The square of %d is %d", b, b*b);

Or, when there is a second integer variable a, we can assign variable a a value using an expression in which
variable b occurs:

a= 2*(b+1)

When b is 5, (b+1) equals 6, so 2*(b+1) equals 12. As a result, variable a is set to 12 by this assignment.

Let us now look at a program that shows variables in action

PRC for E 15

#include <stdio.h>

int main(void)
{
 int a;
 int b;
 int c;
 a= 5;
 b= 7;
 c= a + b;
 printf("%d + %d = %d\n", a, b, c);
 return 0;
}

The first three lines of the main function declare three integer variables named a, b and c. The next two lines
initialize the variable named a to the value 5 and b to 7.

The next line adds a and b and assigns the result to c. What happens is that the computer adds the value in a (5)
to the value in b (7) to form the result 12, and then places that new value (12) into the variable c. We say: the
variable c is assigned the value 12. For this reason, the = in this line is called the assignment operator. It is
pronounced as “becomes” as in “c becomes a plus b” (don’ t say “ is” as in “c is a plus b”).

The printf statement then prints the line 5 + 7 = 12. The %d-s in the printf statement act as placeholders for
values. There are three %d placeholders, and at the end of the printf line there are the three variable names: a, b
and c. Printf matches up the first %d with a and substitutes 5 there. It matches the second %d with b and
substitutes 7. It matches the third %d with c and substitutes 12. Then it prints the complete line to the screen: 5 +
7 = 12. The +, the = and the spacing are a part of the format line and get embedded automaticall y between the
%d operators as specified by the programmer.

As an alternative, we could save variable c and do the calculation in printf:

#include <stdio.h>

int main(void)
{
 int a;
 int b;
 a= 5;
 b= 7;
 printf("%d + %d = %d\n", a, b, a+b);
 return 0;
}

We wrap up this chapter with some rules on variables.

Before a variable can be used in a function, it must be declared. Declaration of a variables in a function11 must
occur as the first lines12.

int main(void)
{
 int a; // Declaration
 a= 5; // Statement
 float b; // Declaration error: can not have a declaration after a statement
 …

A declaration consists of a type13 followed by a variable name. Variable names must start with a lower- or
uppercase letter (or underscore) and may be followed by any number of lower- or uppercase letters, digits or
underscore. A variable name may not be a C keyword. These are good varibale names: ape, Nut, i, Tax2005,
shoot2kill , printf, main, number_of_columns. These are ill egal as variable name: 2005Tax (can not start with
number), shoot 2 kill (can not have spaces), for (is a C keyword). Variables names are case sensitive so ape and
Ape are different variable names.

It is allowed to add an initializer to a declaration:

11 It is also possible to declare variables outside a function; then the variable can be used by all functions. Such a
variable is called a global variable. Global variables are considered bad style, but sometimes they are necessary.
12 The C++ language, which is an extension of C, does allow a declaration anywhere in a block of code.
13 As we will see later, not just a type but a type expression.

PRC for E 16

int a= 1;
int b= a+a;

It is allowed to group the declaration of several variables of the same type (but some consider it bad style
because it mixes badly with type expressions and initializers):

int a, b, c;

2.5 Scanf
Until now, our programs could only perform output. Let’s now delve into data input. The stdio library has a
function scanf – the input counterpart of printf.

The scanf function allows us to accept input from standard-in, which for us is generally the keyboard. The scanf
function can do a lot of different things, but it is generall y unreliable unless used in the simplest ways. It is
unreliable because it does not handle human errors very well . But for simple programs it is good enough and
easy-to-use.

The simplest application of scanf looks like this:

scanf("%d", &i);

The program will read an integer value that the user enters on the keyboard (%d is for integers, as it is in printf,
so i must be declared as an int) and place that value into variable i.

The scanf function uses the same placeholders as printf:

• int uses %d

• float uses %f

• char uses %c

• character strings (not discussed) use %s

We must put & in front of the variable used in scanf. The reason for this is pointers14 (which is outside the scope
of this book). It is easy to forget the & sign, and when we forget it, our program will almost always crash when
we run it.

In general, it is best to use scanf as shown here – to read a single value from the keyboard. Use multiple calls to
scanf to read multiple values. In any real program, we would use the gets or fgets functions instead to read text a
line at a time. Then we will “parse” the line to read its values. With this approach we can detect errors in the
input (entering 5o instead of 50) and handle them as we see fit. But this is beyond the scope of this book.

But in other words, never do

scanf("%d %d", &i, &j); // WRONG

The printf and scanf functions will take a bit of practice to be completely understood, but once mastered they
are extremely useful.

The fragment below shows a simple calculator, well , extremely inconvenient adder is a better description.

14 A scanf(“ %d” ,i) call will make scanf read an integer (that’s what the first argument “ %d” tells it to do) and
store that at a memory location specified by the second argument. If variable i happens to have the value, say, 0,
the read integer will be stored at location 0. This is most likely wrong. Instead, we would like the read integer to
be stored at the location reserved for variable i. Suppose that i is located at address 0400, then scanf should have
been given the address 0400 as second argument. The C compiler has a trick for this: &i returns the address of i,
that would be 0400 in this example. So scanf(“ %d” ,&i) does the trick.

PRC for E 17

#include <stdio.h>

int main(void)
{
 int a;
 int b;
 int c;
 printf("Enter the first value:");
 scanf("%d", &a);
 printf("Enter the second value:");
 scanf("%d", &b);
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
 return 0;
}

PRC for E 18

3 Expressions
C programs consist of functions (explained in chapter 6) which consist of statements (explained in chapter 4)
most of which contain expressions. Expressions denote computations, the activity that gave computers their
name. Expressions are explained in this chapter.

3.1 Introdu ction
C is a programming language, for programming a computer, and computers compute. The formal word for a
single computation recipe like 2+5 or 2*(b+1) is expression. Expressions compute to a value: 2+5 computes to 7
and 2*(b+1) computes to 12 in case b equals 5 (since 2 times 6 (5 plus 1) equals 12).

Let us examine that last expression. Assuming we have a variable b we can form an expression using b:

2*(b+1)

The * and + are called operators. These two happen to be binary operators because they have two operands (the
+ has b and 1, the * has 2 and (b+1)). In C, there are also unary operators (like - in -x) and there is even a
ternary operator.

The operands of an expression are either numbers (officiall y: literals), variables, function calls or sub-
expressions. The following expression shows them all:

1 + a + cos(1) + (3*5)

It should be noted that each expression has a so-called type, that subtly changes the meaning of an expression.
For example, 7 and 7.0 both represent the number seven. But the former is an integer and the latter is a floating
point. This results in a different meaning for / the divide operator:

7 / 2 // computes to integer 3
7.0 / 2 // computes to float 3.5

In the former expression, we divide two integers, resulting in an integer result, hence the 3 instead of 3.5.

When using variables, we have to make the type explicit. The C language has several standard types for
variables. To name a few:

• int integer (whole number) values (such as 3, 5721, or –55).

• float floating point values (such as 1.0, -1.5, 3.1415926535, or –2.11E+17).

• char single character values (such as 'a', 'Z', '3' or '+').

Before we stop with this introduction, let’s have a look at a simple expression that sometimes bewilders novices.
It is in the commented line in the program below:

#include <stdio.h>

int main(void)
{
 int x;
 x= 5;
 printf("x=%d\n", x);
 x= x+1; // increment variable x by one
 printf("x=%d\n", x);
 return 0;
}

This prints

3

PRC for E 19

x=5
x=6

Recall ing the advice on pronunciation, the commented line reads “x becomes x plus 1” . And x was 5 so it
becomes 5+1 that is, 6. Incrementing a variable by one occurs so often that C has a shorthand notation for it:
x+= 1 or even x++ (both are explained in a section below).

3.2 Types
The C programming language comes with integer numbers and floating pont numbers and it knows about
characters (but barely).

3.2.1 Integers
The type int stores integer numbers like 0, 1, 2, 3, but also -1, -2, -3. One of the problems in C (and many other
languages for that matter) is the question: What is the biggest (and smallest) number fitting in an int? The ANSI
specification leaves this largely to the C compiler. It does specify that an int should be stored in at least 16 bits.
So, on every CPU and every compiler, all numbers in the range -32768..32767 fit into an int. On a modern15 PC
(and a modern compiler) an int is 32 bits (-2147483648..2147483647), but the Keil compiler we use for the 8051
CPU in LLP will have 16 bits int’ s.

The C programming language has the modifiers short and long that modify the number of bits used for int.

short int a;
int b;
long int c;
short d; // same as short int
long e; // same as long int

ANSI not only specifies that int is a least 16 bits wide, it also specifies that short has a size smaller or equal than
that of int and that long has a size greater or equal than that of int. This is really a pain when writing a program
that must run on multiple CPUs. As a rule of thumb:

short int long
PC (pentium and bigger) 16 32 32

8051 16 16 32

All of the above are signed integral numbers. There are two other modifiers: unsigned and the superfluous
signed.

unsigned int a;
int b; // is signed
signed int c; // same as int
unsigned short int d0;
short unsigned int d1; // same as unsigned short int
unsigned short d2; // same as unsigned short int
short unsigned d3; // same as unsigned short int
// similar 4 cases for long

The signed and unsigned modifiers do not change the size of the variable (so if an int is 16 bits, a signed int and
an unsigned int are also 16 bits).

In chapter 5 we discuss in more depth how integers are actually stored (size, bit patterns, signed and unsigned).

3.2.2 Floating p oint numbers
The type float stores floating point numbers like 0, 1.5e-30, 1.5, 15.0, 150.0, 1.5e+30 and their negative
counterparts. Next to float, there is double and long double. Typically, these use the 4 respectively 8 and 10 byte
(32, 64 and 80 bits) representation of the IEEE 754 standard discussed in ICM.

float f= -3.14e+20;

15 A word like “modern” is of course dangerous. We are talking standard computers around 2000 (plus or minus
10 years?).

PRC for E 20

In chapter 5 we discuss in more depth how float’ s are stored.

3.2.3 Characters
The C programming language also features the type char. This type stores characters like 'A', 'B', 'C', …, '0', '1',
'2', '3', …, 'a', 'b', 'c', …, '+', '=', '(', …, but also '\n', '\t', '\’ ', … . Note that a char is a single character enclosed in
single quotes (as opposed to a string, which is a series of characters enclosed in double quotes).

The funny aspect is that characters in C are actually numbers. So the type char stores integer numbers, and 'A' is
a funny way of writing 65 (the ascii value of A). So the code below is perfectly legal C:

int i;
char c;
c= 'A';
i= c+2;
printf("i=%c i=%d c=%c c=%d”, i, i, c, c);

and this prints

i=C i=67 c=A c=65

On most CPU’s char is a byte (8 bits). This makes it a very often used data type in low level software that
communicates bytes with hardware. Unfortunately ANSI C does not specify whether char is signed or unsigned,
so if it matters to us, we must add these modifiers. For example, when using the Keil compiler with the 8051
CPU in LLP, we often see

unsigned char portvalue;

3.2.4 Strings
Characters have one special feature in the C language: there is a special notation for a series of characters, the so-
called strings. This has already been introduced in the previous chapter. Since pointers are outside the scope of
this book, and a string is also a pointer to a series of characters, this book will largely ignore strings (we will
only use it in printf).

Keep in mind that

• "A" is a string of length 1 and 'A' is a character;

• "AB" is a string of two characters and 'AB' is a syntax error because single quotes must enclose a single
character;

• "\n" is a string of length 1 (with the linefeed character) and '\n' is a single character;

• " " is an empty string and ' ' a syntax error because single quotes must enclose a single character.

3.2.5 Void
We have seen another type in the examples: void.16 This type can not hold any kind of value. It is mainly used in
functions to specify that the function computes nothing, as in void f(int x), or that a functon has no arguments, as
in int main(void).

Void is also used extensively with pointers, which are not covered in this book.

3.3 Literals and constants
A C program will typically feature literals (sometimes referred to as constants, but that’s less precise) of the
different types. We have seen several examples already, but there are some new ones:

• 0, 1, 2, 3, –1, -2, -3 for integral types

• 'A', 'B', 'C', '0', '1', '2', '3', 'a', 'b', 'c', '+', '=', '(', '\n', '\t', '\’ ' also for integral types (but typically char)

• 0x0, 0x9, 0xA, 0xB, 0xAA, 0xF3F8, 0xfff f also for integral types (hexadecimal)

16 Void means empty (leeg in Dutch).

PRC for E 21

• 0, 1.5e-30, 1.5, 15.0, 150.0, 1.5e+30, -1.5E30 for floating point types

• " ", " ", "Ape nut mary", "He said \"Hey, it's my book!\"\n" for string types.

Most programmers agree that it is ok to have literals like 0 and 1 in our code. But when there is a fragment like

f= e * 2.20371;

most programmers will frown on us and ask “what is this magic constant” . In such a case, give the magic
constant a name (making it less magic) by converting it into an explicit constant.

#define GuildersPerEuro 2.20371
…
int main(void)
{
 …
 f= e * GuildersPerEuro;
 …
}

Observe that there is no semicolon at the end of the #define line.17

3.4 Operators
A literal is a very simple expression. So is a constant or a variable. These are actually the basis for more complex
expressions. More complex expressions are formed by applying an operator to one or more less complex
expressions.

For example

3.95
GuildersPerEuro
e
f

might be a floating point literal, a constant respectively a variable and a variable and as such (basic) floating
point expressions. These can be combined using operators into more complex floating point expressions.

e * GuildersPerEuro
3.95 + f

And these can be combined (using operators) into a yet more complex floating point expression.

(e * GuildersPerEuro) - (3.95 + f)

The *, + and – are examples of operators. This section introduces several of C’s operators.

3.4.1 Arithmetic operators
The arithmetic operators are the ones typicall y taught at school.

printf("%d", 14+4); // addition prints 18
printf("%d", 14-4); // subtraction prints 10
printf("%d", 14*4); // multiplication prints 56
printf("%d", 14/4); // (integer) division prints 3
printf("%d", 14%4); // remainder (modulo) prints 2
printf("%d", -4); // negation prints -4

Note that - is not only a binary operator (14-4) but also a unary operator (-4).

As soon as both operands of / are integer, the operator performs an integer division (pronounced as “div”). So
14/4 equals 3, but 14.0/4.0, 14.0/4 and 14/4.0 all equal 3.5 (one operand is float, so the division becomes a float
division). In case of an integer division, the remainder is lost. There is a special operator % (pronounced as
“mod”) to compute the remainder: 14%4 equals 2 because 4 times 14/4 (that is, 4 times 3) equals 12 so we have
a remainder of 2 (14-12).

17 Many C coding conventions suggest to use all capitals for constants: GUILDERSPEREURO, which is quite
unreadable, so that often underscores get added GUILDERS_PER_EURO.

PRC for E 22

These operators are applicable to integral types (including char) and floating types (except %). It is not possible
to add (concatenate or glue together) strings in C with +.

3.4.2 Relational operators
The C programming language does not have a separate data type for true and false. In many other languages this
type is known as Bool or Boolean. C simply uses int instead and the values 1 and 0 for true respectively false.
With this knowledge the outcome of the following relational operators should be clear.

printf("%d", 5<3); // less than prints 0 (false)
printf("%d", 5<=3); // less or equal prints 0 (false)
printf("%d", 5==3); // equal prints 0 (false)
printf("%d", 5>=3); // greater or equal prints 1 (true)
printf("%d", 5>3); // greater than prints 1 (true)
printf("%d", 5!=3); // unequal prints 1 (true)

Observe that equali ty is denoted with = = (where most other languages use a single =) and inequality is denoted
with != (where several other languages use < >).

These operators are applicable to integral types (including char) and floating types. It is not possible to compare
strings using these operators.

3.4.3 Log ical operator
The C programming language might not have a separate datatype for Booleans, it does have operators for them,
the so called logical operators. However, since int is used for Booleans, a decision had to be made on what the
meaning is of any value other than 0 or 1. ANSI decided that any value other than 0 means true. Knowing this,
the following should be clear.

printf("%d", 1&&1); // logical and prints 1 (true)
printf("%d", 1&&0); // logical and prints 0 (false)
printf("%d", 0&&0); // logical and prints 0 (false)
printf("%d", 5&&3); // logical and prints 1 (true) 5 and 3 are both seen as true
printf("%d", 1||1); // logical or prints 1 (true)
printf("%d", 1||0); // logical or prints 1 (true)
printf("%d", 0||0); // logical or prints 0 (false)
printf("%d", 5||3); // logical or prints 1 (true) 5 and 3 are both seen as true
printf("%d", 0||3); // logical or prints 1 (true) 3 is seen as true
printf("%d", !0); // logical not prints 1 (true)
printf("%d", !1); // logical not prints 0 (false)
printf("%d", !3); // logical not prints 0 (false) 3 is seen as true

Note that ! is an example of a unary operator.

“Normally” , logical operators are used to assemble relational sub-expressions, as in the following examples:

(0<=x) && (x<10)
(x<0) || (x>=10)
!(x==0)

3.4.4 Bitwise operators
The ALU of most CPUs is capable of bitwise manipulation. The C programming language has operators for
them. The following bitwise operators are only applicable to integral types (including char). Recall that 5 is
binary 101 and 3 is binary 11.

printf("%d", 5&3); // bitwise and prints 1 (0000000000000001)
printf("%d", 5|3); // bitwise or prints 7 (0000000000000111)
printf("%d", 5^3); // bitwise xor prints 6 (0000000000000110)
printf("%d", ~3); // 1-complement prints –4 (1111111111111100)
printf("%d", 5<<3); // upshift prints 40 (0000000000101000) 000 shifted in
printf("%d", 5>>2); // downshift prints 1 (0000000000000001) 01 shifted out

The acronym xor means ‘exclusive or’ . Also recall that 1-complement is a bit-flip (off icially known as inverse).

The result of the bitwise operators depends on the size of the int (in the example above 16 bits is assumed).

PRC for E 23

The upshift always shifts in 0. The downshift shifts in 0 for unsigned integral types. For a negative signed integer
it might shift in a 1 but also a 0, this is very inconveniently left unspecified by ANSI. If we shift as many bits or
more as the size of the (left) operand, the behavior of the shift is also unspecified.

Note that ~ is an example of a unary operator.

Do not confuse || (logical or) with | (bitwise or):

printf("%d", 5||3); // logical xor prints 1 (true; 5 and 3 are both seen as true)
printf("%d", 5 |3); // bitwise or prints 7 (bitwise or of 0101 and 0011 is 0111)

3.4.5 Operators with side-effects – part 1
There is one class of operators in C which should be used wisely. These are operators that not only use the value
of its operand, but actually change the operand. Of course, this is only possible if the operand is a variable. This
probably sounds very cryptic. Let’s look at an example.

As noted earlier, one of the most common things in C is incrementing a variable by one. This is so common, that
there is a short hand for that:

int i=3;
printf("%d\n",i);
i++; // here is the increment-by-one shorthand
printf("%d\n",i);

This prints

3
4

The trick is that i++ not only increments i by one but also has a value, namely the old value of i. So, in C it is
perfectly legal to write

int i=3;
int j=0;
printf("i=%d j=%d\n",i,j);
j= 5 * i++;
printf("i=%d j=%d\n",i,j);

This prints

i=3 j=0
i=4 j=15

As we see, i is incremented by one (from 3 to 4) and j is set to the 5 times the old value of i (3).

In addition to the post-increment (i++) there is also a pre-increment operator (++ i). The expression ++ i
increments i by one and has as value the new value of i. So,

int i=3;
int j=0;
printf("i=%d j=%d\n",i,j);
j= 5 * ++i; // changed from post- to pre-incement
printf("i=%d j=%d\n",i,j);

This prints

i=3 j=0
i=4 j=20

As we see, i is incremented by one (from 3 to 4) and j is set to the 5 times the new value of i (4).

In addition, there are also pre- and post-decrement operators (- -i and i- -). They decrement their operand and
have as value the new respectively old value of the operand.

We should use these operators sparingly. It’s best to only use ++ and - - in isolation.

PRC for E 24

3.4.6 Operators with side-effects – part 2
It gets worse. There are several other operators with side effects: = , += , -= , *= etc. These assignment operator
assign, add, substract, respectively multiply the variable on the left with the value on the right as a side-effect,
but also have the outcome as value. So

int i=3;
int j=2;
i+= 4*j;
printf("i=%d j=%d\n",i,j);

prints

i=11 j=2

and

int i=3;
int j=2;
j= (i+= 4*j);
printf("i=%d j=%d\n",i,j);

prints

i=11 j=11

since i+=4*j not only sets i to 11 but has a value of 11, which is assigned to j.

In isolation the assignment-operators make sense, but not when cascaded18. The only sensible application of
cascading probably is

i= j= 0

which sets both i and j to zero.

Why do we have to know this? Because of the single most-often made error in C. Consider

int a=5;
int iszero;
iszero= a==0;
printf("iszero=%d a=%d\n",iszero);

This computes (in iszero) whether a equals 0. It prints iszero=0 (false) because a was 5 and it prints a=5 because
it is unmodified.

However, many people make the mistake of writing

int a=5;
int iszero;
iszero= a=0; // assignment operator instead of relational operator
printf("iszero=%d a=%d\n",iszero);

This print still prints iszero=0, so it looks ok! However, it also prints a=0, because a is assigned the value 0 (and
that is assigned to iszero).

Be aware that = assigns the value on the right to the variable on the left whereas = = compares the left-hand
value with the right-hand value. It is one of the most frequent errors in C to write = (becomes) where == (equals)
is intended.19

3.4.7 Combining operators
A final warning is on evaluation order. When we write

i= 2 * 3+4;

18 Dutch: geschakeld
19 Actually, the most frequent error is writing if(a=0) instead of if(a== 0) but the if-statement has not yet been
explained.

PRC for E 25

the value of i becomes 10 (6 plus 4) not 14 (2 times 7). The reason for this is that multiplication has a higher
precendence than addition.20 But we can (and usually should) override that with parenthesis:

i= 2 * (3+4);

So precedence is about the order of evaluating operators.

What most people don’ t know is that ANSI C leaves unspecified the order of evaluating the operands.21

int i= 0;
int j= ++i + i;

The above might result in j getting the value 1 where most people would expect 2. They claim: first i is pre-
incremented so the left hand side operand of + has value 1 and the right-hand side is also i which then has the
value of 1, so j is set to 1+1. However since the order of computing the operands is free, a C compiler might
decide to first compute the right-hand operand of + (the i, which has value 0) and then the left-hand side operand
(the ++ i, which increments i from 0 to 1 and has value 1). Finally it evaluates the operator (the + on 1 and 0)
resulting in j being set to 1.

In the following more realistic examples it is not guaranteed that f is called before g.

int i= f(3) + g(5);
printf("f=%d, g=%d\n", f(3), g(4))

3.5 Outside the scope of this course
Several aspects of expressions are outside the scope of this book. For example

• Several operators (typecasts, pointer dereferencing, if-operator, comma-operator).

• The details of operator precedence.

• The details of evaluation order and sequence points.

• Typecoersions, sign extension, integer promotion.

20 Some people (claim to) know the precedence of all operators. But is it wise to assume that the maintainer of
your code also knows them? After all , there are nearly 50 opeartors in C. Furthermore, precendence is not
intuitive in all cases. For example << (which is like multiplying) has lower precedence than + (whereas * has
higher). The bitwise operators (&, ̂ , |) have lower precedence than the relational ones like <= (wheras + and –
have higher).
21 ANSI C does define the order of evaluating operands for some operators, the so-called sequence points (e.g.
&& and ||).

PRC for E 26

4 Statements
This chapter discusses several incarnations of statements: assignments, function-calls, blocks, the if-statement,
and two loop-statements: while and for.

4.1 Statements
An expression computes something, but it doesn’ t do anything (unless it is an expression with side effects).
Statements on the other hands are the things that actually do something. We have already seen several examples
of statements.

For example,

i= 5;

is a so-called assignment statement;

printf("Hello, world!");

is a function-call statement, and

return 0;

is a so-called return statement.

We have also seen the block statement.

{
 … first declarations …
 … then a series of statements …
}

It was a bit disguised, but the main function has a block statement after its header (the int main(void) part).
Observe that the block statement consists of an opening brace { , then zero or more declarations, then zero or
more statements, and finall y a closing brace } . Multiple statements can simply be put one after the other.

The block statement is actually rather important. The rest of this chapter shows several other statements such as
if, while and for. All of these conditionally and/or repeatedly execute the a single statement. If that one statement
is not enough, the block statement is used. It groups several statements into one.

4.2 If-statement
Sometimes, a program needs to take different steps when a certain condition holds. This is achieved with an if-
statement, also known as selection statement, conditional statement, or branch statement. The condition is a
“boolean” expression, i.e. an integer expression that is either 0 (false) or non-zero (true).

Here is a simple C program demonstrating an if-statement:

#include <stdio.h>

int main(void)
{
 int i;
 printf("Enter a value:");
 scanf("%d", &i);
 if(i<0)
 printf("Warning: the value is negative\n");
 printf("Done\n");
 return 0;
}

4

PRC for E 27

This program accepts a number from the user. It then tests the number using an if-statement to see if it is less
than 0. If it is, the program prints a warning message. Otherwise, the program prints no warning. The i<0 portion
of the program is the condition (a “boolean” expression). C evaluates this expression to decide whether or not to
print the message. If the expression evaluates to “ true” (non-zero), then C executes the single statement
immediately following the if keyword (the so-called then statement). If the expression is “ false” (zero), then C
skips the then statement.

In either case, execution continues with the statement after the if/then; Done is always printed.

Note, the parenthesis after the if keyword are mandatory! So the following is an error.

if i<0 // Error: parenthesis missing
 printf("Warning: the value is negative\n");

The C programming language is case sensitive, so the if-statement must be written all l ower case (and similar for
all other keywords: while, for, return, …).

Coding conventions dictate that the then statement is indented. However, the C compiler doesn’ t care. So the
following fragments all achieve the same (but especially the third one is frawned upon).

if(i<0)
 printf("Warning: the value is negative\n");

if(i<0) printf("Warning: the value is negative\n");

if(i<0)
printf("Warning: the value is negative\n");

We could even convert the then statement into a block statement “grouping” just the function call.

if(i<0)
{
 printf("Warning: the value is negative\n");
}

Let’s see how to deal with an if requiring multiple statements in the then part. The good approach is a block.

if(i<0)
{
 printf("Some extra statement\n”);
 printf("Warning: the value is negative\n");
}

A common mistake is to indent both, but forgetting the braces.

if(i<0)
 printf("Some extra statement\n”);
 printf("Warning: the value is negative\n"); // Indentation misleading or braces missing

Recall that C doesn’ t care about indentation (it’ s for human readabili ty), it only cares about braces for grouping.
So the above fragment will print

Some extra statement
Warning: the value is negative

when i is negative, and it will print

Warning: the value is negative

when i is positive (or zero).

Back to the if-statement. It has an optional else part. Here's slightly more complex example, that uses it:

PRC for E 28

#include <stdio.h>

int main(void)
{
 int i;
 printf("Enter a value:");
 scanf("%d", &i);
 if(i<0)
 printf("The value is negative\n");
 else
 printf("The value is not negative\n");
 printf("Done\n");
 return 0;
}

The then statement as well as the else statement (the statement immediately following the else) could be any
kind of statement, including an if-statement!

#include <stdio.h>

int main(void)
{
 int i;
 printf("Enter a value:");
 scanf("%d", &i);
 if(i<0)
 printf("The value is negative\n");
 else
 if(i==0)
 printf("The value is zero\n");
 else
 printf("The value is positive\n");
 printf("Done\n");
 return 0;
}

The two if-statements are said to be cascaded22. Cascading if ’ s are quite often not indented; rather they are
written as follows (this is style, not syntax):

if(i<0)
 printf("The value is negative\n");
else if(i==0)
 printf("The value is zero\n");
else
 printf("The value is positive\n");

Alternatively, we could follow the always-use-braces convention

if(i<0)
{
 printf("The value is negative\n");
}
else
{
 if(i==0)
 {
 printf("The value is zero\n");
 }
 else
 {
 printf("The value is positive\n");
 }
}

or the nearly-always-use-braces convention (the author’s preference)

22 Dutch: geschakeld

PRC for E 29

if(i<0)
{
 printf("The value is negative\n");
}
else if(i==0)
{
 printf("The value is zero\n");
}
else
{
 printf("The value is positive\n");
}

All four alternatives are equal in semantics.

The C language also features a switch statement that is a shorthand for cascading if ’ s. It is beyond the scope of
this book.

Here is a more complicated Boolean expression:

if((0<=x) && (x<10))
 z=1;
else
 z=0;

This statement says, “ If (the value in) variable x is greater or equal to 0, and x is less than 10, then set the
variable z to 1, otherwise set it to 0” . By the way, this if-statement could be reduced to

z= (0<=x) && (x<10);

since the value of (0<= x) && (x<10) happens to be 1 if the value in variable x is geater or equal to 0, and less
than 10, and 0 otherwise!

We conclude with the templates of the if-statement:

 if(expression)
 statement

or

 if(expression)
 statement
 else
 statement

4.3 While loop
Until now, there is a serious drawback with our repertoire of C constructs: the run-time of the computer is
proportional to the amount of lines we write. If we want the computer to do more, we have to type more. That is
now going to change; we introduce iterations, repetitions, loops or whatever we want to call them.

For example, suppose we want to print the integers 0, 1, 2, … upto but excluding 10. We could write:

#include <stdio.h>

int main(void)
{
 printf("0\n");
 printf("1\n");
 printf("2\n");
 printf("3\n");
 printf("4\n");
 printf("5\n");
 printf("6\n");
 printf("7\n");
 printf("8\n");
 printf("9\n");
 return 0;
}

PRC for E 30

and we typically see that for each number extra we want to be printed, we need to add one line: “ the run-time of
the computer is proportional to the amount of lines we write”. The alternative is a loop. The program below has
the same output as the program we just saw.

#include <stdio.h>

int main(void)
{
 int i;
 i= 0;
 while(i<10)
 {
 printf("%d\n",i);
 i= i+1;
 }
 return 0;
}

Not only is this shorter, it is also much easier to update. If we need the numbers till 20, we just have to change
the 10 in 20.

The same remarks as for the if-statement apply to the while statement: the while keyword must be written lower
case, the parenthesis are a mandatory part, and the so-called body of the while statement (the statement
immediately after the while keyword) is a single statement. If more statements need to be repeated, use a block
statement for the body.

 while(expression)
 statement

Let's have a look at a more complex example. Say that we would like to create a program that prints a
Fahrenheit-to-Celsius conversion table. Recall that the formula for that is

()32
9
5 −×= fc

The table is easily accomplished with a while loop:

#include <stdio.h>

int main(void)
{
 int f;
 f= 0;
 while(f<=120)
 {
 printf("%4d degrees F = %4d degrees C\n", f, (f-32) * 5 / 9);
 f= f + 10;
 }
 return 0;
}

If we run this program, it will produce a table of values starting at 0 degrees F and ending at 120 degrees F. The
output will l ook like this:

 0 degrees F = -17 degrees C
 10 degrees F = -12 degrees C
 20 degrees F = -6 degrees C
 30 degrees F = -1 degrees C
 40 degrees F = 4 degrees C
 50 degrees F = 10 degrees C
 60 degrees F = 15 degrees C
 70 degrees F = 21 degrees C
 80 degrees F = 26 degrees C
 90 degrees F = 32 degrees C
 100 degrees F = 37 degrees C
 110 degrees F = 43 degrees C
 120 degrees F = 48 degrees C

The table's values are in increments of 10 degrees. We can see that we can easily change the starting, ending or
increment values of the table that the program produces.

PRC for E 31

If we wanted our values to be more accurate, we could use floating point values instead:

#include <stdio.h>

int main(void)
{
 float f;
 f= 0.0;
 while(f<=120.0)
 {
 printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0 / 9.0);
 f= f + 10.0;
 }
 return 0;
}

We see that the declaration for f has been changed to a float, and the %f symbol replaces the %d symbol in the
printf statement. In addition, the %f symbol has some formatting applied to it: The value will be printed with six
digits and two digits following the decimal point. We have also changed all lit erals from int’s to float’s (by
appending a ‘ .0’).

Now let's say that we wanted to modify the program so that the temperature 98.6 is inserted in the table at the
proper position. That is, we want the table to increment every 10 degrees, but we also want the table to include
an extra line for 98.6 degrees F because that is the normal body temperature for a human being. The following
program accomplishes the goal:

#include <stdio.h>

#define step 10.0
#define human 98.6

int main(void)
{
 float f;
 f= 0.0;
 while(f<=120.0)
 {
 if((f-step<human) && (human<f))
 {
 printf("%6.2f degrees F = %6.2f degrees C\n", human, (human -32.0)*5.0/9.0);
 }
 printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0)*5.0/9.0);
 f= f + step;
 }
 return 0;
}

The extra output line with the human body temparature (98.6) needs to be inserted just before a regular output
line is printed for a higher temperature (100). So, we’re tempted to write

if(human<f)

However, this causes the “human body line” to be printed just before 100, but also before 110 and 120! It should
only be printed once, namely in the slot 90..100. However, we wanted the program to still function when
stepping with 20 degrees or 5 degrees, that’s why we have introduced the constant step, and the two-sided check
in the if.

4.4 For loop
When taking a closer loop at while statements, we recognize a pattern:

start ;
 while(stay)
{
 statement
 step ;
}

PRC for E 32

Just before the while loop, there is an initialization (the start expression), there is an expression that determines
whether to stop the looping or whether to stay, and the body of the loop typically steps (increments) a variable.
This is such a common pattern, that the C language has an abbreviation for it: the for loop.

 for(star t ; sta y ; step)
 statement

Again, if the body of the for loop consists of more than one statement a block must be used.

Let’s examine the pattern of temperature table program from the previous section. We recognize the start, the
stay, the stat(ement) and the step:

#include <stdio.h>

int main(void)
{
 float f;
 f= 0. 0 ;
 while(f<=120. 0)
 {
 printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0 / 9.0) ;

 f= f + 10. 0 ;
 }
 return 0;
}

So, this is rewritten using a for loop as follows:

#include <stdio.h>

int main(void)
{
 float f;
 for(f=0. 0; f<=120. 0; f=f+10. 0)
 {
 printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0 / 9.0) ;
 }
 return 0;
}

or even (since the body of the loop is a single statement, and using a shorter assignment operator):

#include <stdio.h>

int main(void)
{
 float f;
 for(f=0.0; f<=120.0; f+=10.0)
 printf("%6.2f degrees F = %6.2f degrees C\n", f, (f-32.0) * 5.0 / 9.0);
 return 0;
}

As a general guideline, use a for loop when the number of steps (iterations) is known before hand, and use a
while loop when the number of steps is not known before hand.

The most typical usage of a for loop is using an integer variable i that is incremented by one (i++) until it
reaches an upper limit. As an example, consider the program below that computes the sum of the numbers 0 up
to but excluding 10.

#include <stdio.h>

int main(void)
{
 int i;
 int s;
 s= 0;
 for(i=0; i<10; i++)
 s= s+i;
 return 0;
}

PRC for E 33

4.5 The semicolon
In some languages, such as Pascal, the ; is a seperator (some call it a joiner) of statements. So, if S1 is some
statement and S2 is a statement, then S1;S2 is also a statement.

C on the other hand, does not have a (extra) symbol to separate (join) two statements. Statements are seperated
(joined) simply by juxtaposition23. So, if S1 is some statement and S2 is a statement, then S1 S2 is also a
statement.

This sounds wrong at first, because there are a lot of semicolons in a C program. The truth is that the semicolons
are actually part of most statements. For example, the function call statement has the form

func(arg) ;

the assignment statement has the form

var = expression ;

the return statement has the form

 return expression ;

but the block statement has the form

 { statement statement statement … }

without a semicolon.

4.6 Outside the scope of this boo k
There are several other forms of statements:

• empty statement (;) sometimes used in loops;

• multiple choice switch statement;

• “ repeat” statement (do..while);

• break statement;

• continue statement;

• goto statement.

These are beyond the scope of this book.

23 In plain English: “placing head to tail ” ; in Dutch “gewoon achter elkaar zetten” .

PRC for E 34

5 Data types
Section 3.2 introduced types (integers, floating point, characters, strings and it even mentioned void). These
types are known as standard types.

C also provides means to build bigger types from several smaller types, starting from these standard types. The
first major construct is called array; it is a series of objects of the same type. For example, a string is actually an
array of characters. The second major construct is a struct (i.e. a structure, also known as record); it is a set of
objects of multiple types. For example, a date (day=25, month=“December”) is usually stored as a struct.

5.1 Arrays
An array lets us declare and work with a collection of values of the same type. For example, we might want to
create a collection of five integers. One way to do it would be to declare five integers directly:

int i;
int j;
int k;
int l;
int m;

This is okay, but what if we needed a thousand integers? An easier way is to declare an array of five integers:

int a[5];

The five separate integers inside this array are accessed by position. This form of accessing is called indexing.
All arrays (in C) start at index 0 and go to n-1. Thus, int a[5] ; contains five elements, indexed with 0, 1, 2, 3, and
4. For example:

int a[5];
a[0] = 12;
a[1] = 9;
a[2] = 7; // see drawing
a[3] = 14;
a[4] = 1;

al located by
the compi ler

7

al located by
the compi ler

norma l va r iab le
(a.k.a. sca lar)

int i;

ar ray var iab le

int a[5];

a[0]

a[1]

a[2]

a[3]

a[4]

i

plac ing 7 in i
wi th s ta tement

p lac ing 7 in a [2]
wi th s ta tement

i= 7; a[2]= 7;

7

One of the nice things about array indexing is that we can use a loop to manipulate the index. For example, the
following code initializes all of the values in the a array to 0:

5

PRC for E 35

int a[5];
int i;
for(i=0; i<5; i++)
 a[i]= 0;

By the way, there are two occurrences of 5 in this code, both have to do with the size (5) of the array. If one
changes, the other one should also change. Seasoned programmers make a constant for that.

#define SIZE 5
int a[SIZE];
int i;
for(i=0; i<SIZE; i++)
 a[i]= 0;

The following code reads values into an array and prints them out in reverse order.

#include <stdio.h>
#define SIZE 5

int main(void)
{
 int a[SIZE];
 int i;

 for(i=0; i<SIZE; i++)
 scanf("%d", &a[i]);

 for(i=SIZE-1; i>=0; i--)
 printf("a[%d]=%d\n", i, a[i]);

 return 0;
}

One of the classical problems for arrays is to sort them. The issue here is to do that fast. This is usually measured
in the number of comparissons that are needed. The top algorithms sort an array of n objects using n⋅2log(n)
comparisons (so, an array of 1000 names takes 10 000 comparisons). But these algorithms require software
techniques outside the scope of this book. We present a middle-of-the-road algorithm; it requires n2 comparisons
(so the 1000 names take 1 000 000 comparisons which is 100 times slower).

#include <stdio.h>
#define SIZE 10

int main(void)
{
 int a[SIZE]= {5,9,2,1,0,3,4,8,6,7};
 int i;

 // Print old order
 for(i=0; i<SIZE; i++)
 printf("%d ",a[i]);
 printf("\n");

 // Sort
 for(i=0; i<SIZE; i++)
 { // Find the smallest int in the section [i..SIZE) and put it at position i

 // Let p point to that smallest int found so far.
 int p= i;

 // Let j loop over the remaining [i+1..SIZE) int’s .
 int j;
 for(j=i+1; j<SIZE; j++)
 {
 if(a[j]<a[p])
 p= j; // j points to a smaller int than p so remember that
 }

 // At this moment p points to the smallest int in [i..SIZE)
 { // S wap cell p with i in array a (start new block for temp var h)
 int h=a[i]; // temporary storage for a[i]
 a[i]=a[p];
 a[p]=h;
 }

PRC for E 36

 }

 // Print new order
 for(i=0; i<SIZE; i++)
 printf("%d ",a[i]);
 printf("\n");

 return 0;
}

There are several aspect worth noting

• The problem has been decomposed in smaller parts, seperated with a whiteline

• Each of the parts has a comment explaining its workings.

• This program features a loop in a loop. The so-called outer loop (loop with i) loops over all i ndexes, with the
aim to put the next smallest value at position i.24 The inner-loop (loop with j) loops over all remaining
indexes, with the aim to find the smallest in the remaining part.25

• The array is sized using a constant SIZE.

• The array has an initili zer ({5,9,2,1,0,3,4,8,6,7}).

• There is a fragment that swaps two integers; it is coded in a block statement with a local variable h.

5.2 Structs
Structures in C allow us to group objects (variables) of different type into one package. Here's an example:

struct MyStruct { int a; int b; float c; char d; } s;

This is actuall y a variable definition (for variable s) together with a struct definition: if we want another variable
of the same type, we only need to repeat the structure tag, not its actual definition:

struct MyStruct r;

It is even allowed to have a struct definition without the variable definition, which only makes sense if the struct
is used later on:

struct MyStruct { int a; int b; float c; char d; }; // No variable!
struct MyStruct s;
struct MyStruct r;

We access fields of structure using a dot (.), for example, s.b= 7; .

24 Some developers actually write down an invariant: a proposition that stays true while the loop progresses. In
this case, the invariant (of the outer loop) is: the array segment a[0..i) is correctly sorted and all values a[0..i) are
less than any of the values in a[i..SIZE).
25 The invariant of the inner loop is: a[p] is the smallest value in the segment a[i..j).

PRC for E 37

al located by
the compi ler

7

struct MyStruct {
 int a;
 int b;
 float c;
 char d;
} s;

al located by
the compi ler

norma l va r iab le
(a.k.a. sca lar)

int i;

struct(u re) var iab le

s.a

s.b

s.c

s.d

i

plac ing 7 in i
wi th s ta tement

p lac ing 7 in s.b
wi th s ta tement

i= 7; s.b= 7;

7

The program below uses a struct to store a date (a year, a month and a day). Observe that the fields of the struct
can be read with scanf (e.g. scanf("%d",&d.month);), but they can also be used in the expression of the if
(e.g. d.month== 12) and can be printed (e.g. printf("Christmas %d\n",d.year);).

#include <stdio.h>

int main(void)
{
 struct date { int year; int month; int day; } d;
 printf("Enter year : "); scanf("%d",&d.year);
 printf("Enter month: "); scanf("%d",&d.month);
 printf("Enter day : "); scanf("%d",&d.day);
 printf("\nIt is ");
 if(d.month==12 && d.day==25)
 printf("Christmas %d\n",d.year);
 else
 printf("%d %d, %d\n",d.year, d.month, d.day);
 return 0;
}

This has output (italic part entered by user)

Enter year : 2006
Enter month: 12
Enter day : 25

It is Christmas 2006

5.3 Combinations
It is allowed in C to make arrays of structs, structs of structs, structs of arrays, or even an array of structs of an
array, and so on. For example, to make an array for 10 date’s we could write

struct date { int year; int month; int day; } d[10];

With this definition, it takes the following code to set the last date to Christmas:

d[9].year= 2006;
d[9].month= 12;
d[9].day= 25;

Consider another example where we have a person record

PRC for E 38

struct person {
 struct date DayOfBirth;
 char Name[20];
} Somebody;

and of course, we could have an array of thirty persons

struct person FirstYearStudents[30];

To check whether name of the last person starts with P, we would write

if(FirstYearStudents[29].Name[0] == 'P') …

5.4 Storing standard types
Values (and variables) of a different type use a different amount of storage space. Furthermore, the meaning of
the bit patterns in that storage space also differs. This section explains storage size and bit patterns.

It is especially important when writing software that drives hardware, because then each bit needs consideration.

5.4.1 Storage size
Let us first have a look at the size of an expression. There is a special operator, sizeof(E), that returns the size (in
bytes) required to store expression E. So, when we run the following program (modern compiler on modern PC)

#include <stdio.h>

int main(void)
{
 signed char sc;
 unsigned char uc;
 signed short int ssi;
 unsigned short int usi;
 signed int s_i;
 unsigned int u_i;
 signed long int sli;
 unsigned long int uli;

 float f;
 double d;
 long double ld;

 printf("signed char: %d\n",sizeof(sc));
 printf("unsigned char: %d\n",sizeof(uc));
 printf("signed short int : %d\n",sizeof(ssi));
 printf("unsigned short int : %d\n",sizeof(usi));
 printf("signed int : %d\n",sizeof(s_i));
 printf("unsigned int : %d\n",sizeof(u_i));
 printf("signed long int : %d\n",sizeof(sli));
 printf("unsigned long int : %d\n",sizeof(uli));

 printf("float : %d\n",sizeof(f));
 printf("double : %d\n",sizeof(d));
 printf("long double : %d\n",sizeof(ld));

 return 0;
}

we get the following output

signed char: 1
unsigned char: 1
signed short int : 2
unsigned short int : 2
signed int : 4
unsigned int : 4
signed long int : 4
unsigned long int : 4
float : 4
double : 8
long double : 8

PRC for E 39

We see that char’s only take one byte of memory to store, a short takes 2 bytes, an int and a long are the same,
they both take 4 byte. The floating point type float takes 4 bytes and double and long double are the same: 8
bytes (remember these figures are not for C in general, they apply to modern compiler and a modern PC).

5.4.2 How is the value 65 stored?
Let us next have a look at the bit patterns; at how a value is stored in memory. Suppose that we assign all
variables the value 65 (with statements like sc=65; f=65;). How does the memory look like?

signed char 41
unsigned char 41
signed short int 00 41
unsigned short int 00 41
signed int 00 00 00 41
unsigned int 00 00 00 41
signed long int 00 00 00 41
unsigned long int 00 00 00 41
float 42 82 00 00
double 40 50 40 00 00 00 00 00
long double 40 50 40 00 00 00 00 00

The output above (memory is dumped in hex) shows that a (signed or unsigned) char with value 65 is fill ed with
the expected bit pattern:

0 1 0 0 0 0 0 1

If we take a look at the longer integers, we see that they get extended with zeros. For example a short with value
65 is stored as follows.

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

The reader may wonder about the float (or (long) double) representation. Usually (as for the compiler used in
this example) a float is stored according to the IEE 754 standard:

65(dec)= 41(hex)= 1000001(bin)= 1.000001 E 110 (bin) (normalized)

sign: + coded as 0
exp: 110(bin) coded as 10000101 (the +127 notation)
mant: 0000010...0000 (drop the leading 1)

0 10000101 00000100000000000000000 (sign, exp, mant concatenated)

0100 0010 1000 0010 0000 0000 0000 0000 (bin)

42 82 00 00 (hex)

5.4.3 What does the pattern A0…A0 mean?
We can also reverse the game. Let us assume that we fill all the bytes that make up a value (so the two bytes of a
short, or the 4 bytes of an int) with the bit pattern 10100000 (bin), that is A0 (hex) or 160 (dec).

If this is the memory reserved for a unsigned char, it represents the decimal value 160. If this memory is reserved
for a signed char, it represents the decimal value –96. Why? Because by interpreting it as signed, it is looked at
with two’s-complement glasses. It has the MSB (most significand bit) 1, so it is negative.

The table below il lustrates all cases.

signed char: -96
unsigned char: 160
signed short int : -24416
unsigned short int : 41120
signed int : -1600085856
unsigned int : 2694881440
signed long int : -1600085856
unsigned long int : 2694881440
float : -2.721135e-019
double : -1.587369e-151
long double : -1.587369e-151

PRC for E 40

5.4.4 Which type to use?
When we want to store a number, which type to use? The rule of thumb is to always use int. It is the fastest and
easiest. If storage matters (we have littl e memory and we have a large amount of numbers to store) only then
think about using short or char. If int is too small (we want to store the value 40000 and the code needs to run on
e.g. an 8051) use long.

Be very careful when mixing (sub)expressions of a different type in one expression. The following program
checks whether signed integer i with value –1 is smaller than unsigned integer n with value +1.

int main(void)
{
 signed int i= -1;
 unsigned int n= +1;
 if(i<n) printf("yes"); else printf("no");
 return 0;
}

To our big surprise, this program prints

no

Why is that? Because we mix two types (signed i and unsigned n) in one expression (i<n) and then the dark rules
of C apply. In this case ANSI C dictates that the unsigned wins, i.e. the signed value is interpreted as an
unsigned. The signed i equals –1, so it has bit pattern 1111111111111111. With an unsigned interpretation, this
has the value 65535. So the dark rules of C translate the expression to

if(65535<1) printf("yes"); else printf("no");

which clearly should print no!

Do we have to know this? If we make a living out of C programming yes! Otherwise, just remember not to mix
types in one expression; then we’re relatively safe.

Another warning: never compare floats for equali ty. In the following program, we assign float f the value of
1 fifth. We print its value, which is indeed 0.2, and compare it with 0.2.

int main(void)
{
 float f= 1.0/5.0;
 printf("f=%f\n", f);
 if(f==0.2) printf("yes"); else printf("no");
 printf("\n");}

This prints

f=0.200000
no

Why “no”? because the binary representation of 0.2 is not finite:

0.0011001100110011001100110011

and then one 0.2 might be stored differently then another

0.00110011001100110011001101 // rounded (up)
0.00110011001100110011001100 // chopped (rounded down)

in the IEEE 754 notation.

So, remember to never compare floats for equali ty, rather use “ less than” :

if(abs(f-0.2)<1E-10)

5.5 Storing a struct
What is the memory layout of a struct?

Suppose we have a struct like the following:

PRC for E 41

struct Two { char f1; int f2; } s;

On a PC we know that sizeof(s.f1) equals 1 and sizeof(s.f2) equals 4.

However on that same PC, sizeof(s) is not 5 but 8 bytes!

The reason for this is that (by default) compilers optimize for speed (and not for size). And for speed, it helps
when integers start at an address that is a multiple of 4 (this is due to the PC hardware architecture). As a result,
the struct has the following memory layout:

f1 f2

The gray bytes are not used. This is called padding. By padding structs the compiler achieves alignment of
variables (fields), leading to fastest code.

It is very easy to check this for ourself. Simply run the following code (there is a “new” operator here: & which
returns the memory address of a variable26, and a new printf template %p which is used to print addresses)

printf("start of s.f1 at %p, size of s.f1 is %d\n", &s.f1, sizeof(s.f1));
printf("start of s.f2 at %p, size of s.f2 is %d\n", &s.f2, sizeof(s.f2));
printf("start of s at %p, size of s is %d\n", &s, sizeof(s));

which prints

start of s.f1 at 0064FDE0, size of s.f1 is 1
start of s.f2 at 0064FDE4, size of s.f2 is 4
start of s at 0064FDE0, size of s is 8

confirming (detail ing) the previous picture.

f1(s ize=1) f2 (s ize=4)

s (s ize=8)

0 0 6 4 F D E 40 0 6 4 F D E 0

5.6 Outside the scope of this course
There are several types and type related aspects not covered in this book:

• enumeration types (enum)

• union types (union)

• bitfields

• multi dimensional arrays

• pointers (*) – this is probably the biggest omission in this book

• strings (since they are a form of pointers)

• typedef ’s for giving the constructed type a name

• the const modifier

26 Actually “memory address” means “pointer” , but we promissed not to do pointers in this book -.

PRC for E 42

6 Functions
Most languages allow one to create functions (subroutines, procedures) of some sort. Functions let us chop up a
long program into named sections so that the sections can be reused throughout the program. It is even possible
to group popular functions into a separate C file(s) and convert them into a reusable library. This is actually what
has been done for e.g. printf and scanf !

6.1 Divide and conqu er
One of the most important aspects of a function is the fact that it chops-off a part of the main program. This is an
instance of the “divide and conquer” paradigm of solving big problems.

Let’s start with an example of a (overly) simple program.

#include <stdio.h>

int main(void)
{
 // Intro
 printf("Welcome to my fabulous program HELLOWORLD\n");
 printf("Version 1.0 by Maarten Pennings\n”);

 // Here starts the real content of my fabulous program
 printf("Hello, world!\n");

 // Done with the real content of my fabulous program
 printf("HELLOWORLD says bye now...\n");

 return 0;
}

Next, let’s “chop-off the introduction into a named section” .

#include <stdio.h>

void PrintIntro(void)
{
 printf("Welcome to my fabulous program HELLOWORLD \n");
 printf("Version 1.0 by Maarten Pennings\n”);
}

int main(void)
{
 PrintIntro();

 // Here starts the real content of my fabulous program
 printf("Hello, world!\n");

 // Done with the real content of my fabulous program
 printf("HELLOWORLD says bye now...\n");

 return 0;
}

We have now created a function with the name PrintIntro. It is called from main via the function call statement
PrintIntro();. Note that the parenthesis in a function call are mandatory. A function header (the function name,
its parameters and the types) together with its body are called a function definition.

In this example, the function PrintIntro accepts no parameters (that’s what the “ (void)” after PrintIntro is
specifying), nor does it return any result (that’s what the void before PrintIntro is specifying). In general, C
functions can accept an unlimited number of parameters, and they can return a value of practically any kind. The

6

PRC for E 43

(types) of its parameters, the type of its result and its name, are together called the signature of a function (and
the signature is defined by the function header).

Note that there is no ; after the header in the first line. If we accidentally put one in, we will get a huge cascade
of error messages from the compiler that make no sense. Also note that there is no semicolon at the end of the
body.

By now, the mystery of main should have been resolved. It’ s just a function, like any other. The only special
thing about it, is that the operating system (the loader) will call it , so its parameters, result and name (in short, its
signature) are fixed – otherwise the loader wouldn’ t know what to call , what to pass nor what to do with the
answer.

For ill ustrative purposes, let’s create another function for the exit message.

#include <stdio.h>

void PrintIntro(void)
{
 printf("Welcome to my fabulous program HELLOWORLD \n");
 printf("Version 1.0 by Maarten Pennings\n”);
}

void PrintExit(void)
{
 printf("HELLOWORLD says bye now...\n");
}

int main(void)
{
 PrintIntro();
 printf("Hello, world!\n");
 PrintExit();
 return 0;
}

Many people believe that the above order of the functions is logical. C doesn’ t care in what order we put our
functions in the program, as long as the function signature is known to the compiler before it is called. So

#include <stdio.h>

 void PrintExit(void)
{ … }

void PrintIntro(void)
{ … }

int main(void)
{
 PrintIntro();
 printf("Hello, world!\n");
 PrintExit();
 return 0;
}

is also ok, but

#include <stdio.h>

void PrintExit(void)
{ … }

int main(void)
{
 PrintIntro(); // C compiler will give an error that it doesn’t know PrintIntro
 printf("Hello, world!\n");
 PrintExit();
 return 0;
}

void PrintIntro(void)
{ … }

PRC for E 44

is not ok! The main function is call ing PrintIntro, before the definition of PrintIntro is given (this problem can
be fixed though, read on!).

6.2 Returning results
Let’s make a function that’s a littl e bit more complex, one that returns a value. It’s hard to come up with a
meaningful function with that signature. But there is one. The standard function rand returns a pseudo random
number.27

int rand_seed= 10;

// from K&R: produces a random number between 0 and 32767.
int rand(void)
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

The int rand(void) line declares the function rand to the rest of the program. It specifies that rand wil l accept no
parameters and returns an integer result. Note that even though there are no parameters, we must use the (void).
They tell the compiler that we are declaring a function rather than simply declaring an int.

The return statement is important to any function that returns a result.28 It specifies the value that the function
will return. By the way, the return statement also causes the function to exit immediately. This means that we
can place multiple return statements in the function to give it multiple exit points.29 If we do not place a return
statement in a function, the function returns when it reaches } and returns some spooky value (many compilers
will warn us if we fail to return a specific value). In C, a function can return values of nearly any type: int, float,
char, struct, etc.

There are several correct ways to call the rand function. For example: x= rand();. The variable x is assigned the
value returned by rand in this statement. Note that we must use () in the function call , even though no parameter
is passed.30

We might also call rand this way:

if(rand()>100)

Or this way:

rand();

In the latter case, the function is called but the value returned by rand is discarded. We probably never want to
do this with rand, but many functions return some kind of error code, and if we are not concerned with the error
code (for example, because we know that an error is impossible) we can discard it in this way. This is not
theoretical: the printf statement returns the number of characters printed or a negative value if an output error
occurs.

As we saw above, functions can use a void return type if we intend to return nothing.

27 The rand() function uses a (global) variable rand_seed. It is an integer, and it is initialized with 10. Global
variables are usable in any function body that occurs later in the file. Global variables are condemned in a lot of
coding conventions; local variables (i.e. variables defined in the body of a function and only accessible by that
function) are by far preferred. However, local variables “die” when the function ends, and that is not what we
want in this case (otherwise rand() would return the same “random number” each time).
28 In this example, the return expression has an operator that is outside the scope of this book, namely a typecast
operator, written as (unsigned int).
29 A function with multiple exit points is also condemned by some developers as bad style.
30 Otherwise, x is given the memory address of the rand function, which is generally not what you intended.
Memory addresses is a pointers topic, and hence not part of this book.

PRC for E 45

6.3 Passing p arameters
C functions can accept parameters of any type. For example, the function fac defined as

// Returns factorial of n (n>=0)
int fac(int n)
{
 int f;
 int i;

 f= 1;
 for(i=2; i<=n; i++)
 f= f*i;
 return f;
}

returns the factorial of n, which is passed in as a single integer parameter.31

To pass multiple parameters, separate them with commas:

int add(int a, int b)
{
 return a+b;
}

Given these two functions, we could now type

int main(void)
{
 int i;
 int j;
 i= fac(5);
 j= add(i,3);
 j= j * fac(add(1+2,3)+4);
 return j;
}

not that this is a useful program…

6.4 Passing arrays
Actually, the type of the parameters maybe any type construction. In this section we restrict ourselves to array
parameters. A useful feature is that we may leave out the size of the array – in the declaration of the parameter.

int sum(int row[])
{
 return …
}

The above function sum may now be called with an integer array with 5 items, but also with an integer array of
5000 items. However, the function has one big flaw: how is it supposed to know the size of the array? There is
no magic in C, so we have to fix that ourselves:

int sum(int size, int row[])
{
 int s;
 int i;
 s=0;
 for(i=0; i<size; i++)
 s= s + row[i];
 return s;
}

Given this functions, we could now type

31 Recall that the factorial of 5 (mathematically written as 5!) is 5×4×3×2×1 and, for example, 3!= 3×2×1.

PRC for E 46

int main(void)
{
 int row1[5];
 int row2[5000];
 … // filling row1 and row2
 printf("sum[row1]=%d\n", sum(5,row1));
 printf("sum[row2]=%d\n", sum(5000,row2));
 printf("sum[row2[0..99]]=%d\n", sum(100,row2));
 return j;
}

Note the 3rd printf.

6.5 Scope
The scope of a variable describes where in a program's text a variable may be used. Scope is a syntactical aspect
of a variable. The scope of a variable is the portion of the program code for which the variable's name has
meaning and for which the variable is said to be visible. Entrance into that scope typically begins a variable's
li fetime and exit from that scope typically ends its lifetime. C has two notions of scope: global variables, and
variables in a block (which includes functions, since their body is a block). A global variable may be referred to
anywhere in the program, a block variable may only be referred to in that block. It is erroneous to refer to a
variable where it is out of scope.

int v1; // v1 is global, can be used anywhere in f and in main
int f(int v2) // v2 is local to f, can be used anywhere (and only) in f
{
 int v3= v2*v2; // v3 is local to f, can be used anywhere (and only) in f
 if(v1<v3)
 {
 int v4=v3-v1; // v4 is local to this then-part, can be only in then-part
 return v4;
 }
 else
 {
 return v1;
 }
}

int main(void)
{
 int v5= 5; // v5 is local to main, can be used anywhere (and only) in main
 v1= 1;
 return f(v5+v1)
}

Variables in an inner scope, hide variables from the outer scope if they have the same name. In the fragment
below, there is a global integer x. Since it is global, main can use it (assign 5 to it, pass it to f etc). Similarly,
since x is global, f could also use it. However f has a local x (its parameter) which hides the global x (makes the
global x inaccesible).

int x; // global x

int f(int x) // introduces a local x at the scope of function f
{
 x= x+3; // local x (of f)
 return x*2; // local x (of f)
}

int main(void)
{
 int y;
 x= 5; // sets global x to 5
 y= f(3);
 printf("%d\n”,x); // global x
 y= f(x); // global x
 printf("%d\n”,x); // global x
}

The above program prints two times a 5, since variable x of main is not changed. Even in the latter call to f, the x
is not changed. This mechanism of passing a parameter (that can not be / is not changed) is known as call by
value.

PRC for E 47

There are mechanisms in C to have the value of variable x changed by function f. To achieve this, x should not
be passed by value, rather x should be passed by reference. However, in C passing by reference requires in-depth
knowledge of pointers, which is outside the scope of this book.32

6.6 Function p rototypes
Many coding conventions consider it good form to use function prototypes for all functions in a program. A
prototype declares the function signature, i.e. its name, its parameters, and its return type to the rest of the
program prior to the function's actual definition. A prototype is a header followed by a semicolon (;) instead of a
body.

As we saw above, the following program will give compiler warnings (unfortunately, it will not give us an error
that the call to add does not have enough parameters!).

#include <stdio.h>

int main(void)
{
 printf("%d\n",add(3)); // missing second parameter is not trapped
 return 0;
}

int add(int i, int j)
{
 return i+j;
}

One way to solve this is to exchange the place of main and add. Another way to solve this problem is prototypes.
C lets us place function prototypes at the beginning of (actuall y, anywhere in) a program. If we do so, C checks
the types and counts of all parameter lists. Try compil ing the following:

#include <stdio.h>

int add(int i, int j); // the prototype (note presence of semicolon and absence of {})

int main(void)
{
 printf("%d\n",add(3)); // due to earlier prototype, we now get a warning
 return 0;
}

int add(int i, int j)
{
 return i+j;
}

The prototype causes the com piler to flag an error on the erroneous call to add in the printf statement.

A function defini t ion consists of a header and a body...

The body def ines the imp lementa t ion (which statements to execute) ...

The header speci f ies the s ignature (name, parameters, types) ...int add(int i, int j)

{
 return i+j;
}

A function prototype consists of a header and a semicolon...

The semicolon indicates th is is a funct ion prototype instead of a def in i t ion...

The header speci f ies the s ignature (name, parameters, types) ...int add(int i, int j)

;

32 But, the second parameter of scanf("%d",&i) is passed by reference!

PRC for E 48

7 Old examiniations
Since these are copies of real examinations, they’re in Dutch.

7.1 Trial for 2005

Hogeschool Eindhoven
Studierichting Hogere Informatica

Vak : SPR3/PRCE

Docent : Maarten Pennings, Agnes Veugen

Tijdstijp : Dit is een proeftentamen voor PRCE samengesteld uit bestaande PRC tentamens

Opgave 1. Express ies (1 pun ten per vraag; totaal 5) her2002 (verkort)

Geef voor elk van de volgende statements wat de output zal zijn.

1a) printf("%d", 0x30 & 0x11);

1b) printf("%d", 0x30 && 0x11);

1c) printf("%d", 0x03 << 0x02);

1d) int i=10; printf("%d", i=i+1);

1e) printf("%d", !23);

Opgave 3. Structs en functies (20 pun ten 2, 4, 4, 5, 5) her2002 (aangepast)

We gaan in deze opgave werken met datums. Een datum representeren we met een struct met drie integers, voor
jaar, maand en dag.

3a) Geef de struct voor Datum.
3b) Schrijf een functie

int DatumKerstmis(struct Datum d)

waarbij de functie 1 oplevert als datum d op 25 december valt, en 0 als d niet op 25 december valt.

3c) Schrijf een functie

void DatumPrint(struct Datum d)

die een datum print door eerst de dag te printen (1..31), dan een minnetje, dan de maand (1..12) ook weer
gevolgd door een minnetje en tenslotte het jaar (bijvoorbeeld 31-12-1999).

3e) Schrijf een functie

int DatumVergelijk(struct Datum d1, struct Datum d2)

die –1 retourneert als d1 kleiner is (vroeger is in de tijd) dan d2 , 0 retourneert als d1 geli jk is aan d2 en +1
retourneert als d1 groter is (later is in de tijd) dan d2 . Voorbeelden: 30-12-1999 is groter dan 29-12-1999 en
groter dan 31-10-1999, maar kleiner dan 1-1-2000.

Tip: kijk eerst of het jaar van d1 kleiner is dan het jaar van d2 (zoja, return –1) of dat het jaar van d1 groter is
dan het jaar van d2 (zoja, return +1); ga dan pas de maanden (net zo) en de dagen vergelijken.

7

PRC for E 49

Opgave 4. TelZe her2003 (aangepast)
Schrijf een functie, TelZe genaamd, dat met precies twee argumenten aangeroepen moet worden:

int TelZe(char s1[], char s2[])

De functie bepaalt het aantal keer dat in beide argumenten op overeenkomstige plaatsen hetzelfde karakter staat.

Voorbeeld:
Aanroep: TelZe("peter", "patse")
Output: 2 (op de 1e plaats staat in beide argumenten een p en op de 3e plaats in beide een t.)

Nota bene: de C compiler zorgt ervoor dat er altijd een karakter extra in het karakter array staat (bij gebruik van
de “…” notatie), namelijk een ascii waarde 0 aan het einde!

Opgave 4. Breuken (8 punten per vraag; totaal 32) ten2002 (aangepast)

We gaan in deze opgave werken met breuken. Breuken kunnen we representeren met een (integer) teller en een
(integer) noemer. We definieren daarom het volgende struct om in C met breuken te werken.

typedef struct Breuk
{
 int teller;
 int noemer;
};

4a) Schrijf een functie

struct Breuk BreukLees(void)

die twee integers inleest en deze opslaat in een Breuk die geretourneerd wordt.

4b) Schrijf een functie

void BreukPrint(struct Breuk a)

die een breuk print door eerst de teller te printen, dan een slash, en dan de noemer (bijvoorbeeld 25/200).

4c) We brengen in herinnering dat het produkt van de breuken ta / na en tb / nb geli jk is aan (ta × tb) / (na × nb).
Voorbeeld: 2/3 maal 5/7 is 10/21.

Schrijf een functie

struct Breuk BreukMaal(struct Breuk b1, struct Breuk b2)

die het produkt van b1 en b2 berekent en dit retorneert.

4d) Schrijf de main() functie die eerst twee breuken inleest (met behulp van BreukLees()), ze daarna
vermenigvuldigt (met behulp van BreukMaal()) en die tenslotte het hele sommetje print (met behulp van
BreukPrint() en wat printf’ s).
Voorbeeld: het vermenigvuldigingssommetje van 2/3 en 5/7 wordt alsvolgt uitgevoerd.

2/3 x 5/7 = 10/21

(einde van het tentamen)

PRC for E 50

7.2 Real examination 2005

Hogeschool Eindhoven

Studierichting Hogere Informatica

deeltijd

Vak : SPR3/PRCE tentamen

Docent : M.Pennings, A. veugen

Datum : 10 april 2006

tijd : 18.00-19.40 uur

Hulpmiddelen : dictaat, boeken, aantekeningen

Normering: : 20(opg1) + 5(opg2) + 10(opg3) + 15(opg4) + 25(opg5) + 15(opg6) + 10(bonus)

Waarschuwing: dit tentamen is alleen voor electro studenten.
Werk netjes: = schrijven in plaats van = = , puntkomma’s of accolades vergeten etc. kost punten.

Opgave 1 Expressies (20 punten, 2 per deel-opg ave)
Geef voor elk van de fragmenten aan wat de output zal zijn (op een PC).

1a. printf("%d", 0x5A | 0x3C);
1b. printf("%d", 0x5A || 0x3C);
1c. printf("%d", 6 << 2);
1d. printf("%d", 6 <= 2);
1e. printf("%d", 6 == 2);
1f. printf("%d", !6);
1g. printf("%d", 27 / 4);
1h. printf("%d", 27 % 4);
1i. printf("%d", 'A' – 'C');
1j. printf("%d", sizeof(char));

Opgave 2 Pre- and post increment (5 pun ten)
2. Wat is de output van het volgende fragment.
int i=4; printf("%d", ++i); printf("%d",i); printf("%d",i++);

Opgave 3 Printf (10 punten, 2 per deel-opg ave)
Geef voor elk van de fragmenten aan wat de output zal zijn (hint: de ASCII waarde van ‘ j’ is 10610 of 6A16).

3a. printf("%d", 106);
3b. printf("%5d", 106);
3c. printf("%x", 106);
3d. printf("%X", 106);
3e. printf("%c", 106);

Opgave 4 Theorie (15 punten, 3 per deel-opg ave)
4a. Wat is linken?
4b. Wat is padding?
4c. Wat is indentatie?
4d. Wat is een escape character?
4e. Wat is een prototype?

PRC for E 51

Opgave 5. Priemgetallen (25 pun ten, 10+5+10)
We brengen in herinnering dat de C-expressie a % b de rest-bij-deling van a door b oplevert. Dat betekent dus
dat als a % b geli jk is aan 0, dat er geen rest is, ofwel dat b een deler van a is.
5a. Schrijf een functie

int AantalDelers(int a)

die het aantal delers van a retourneert. De preconditie is a ≥ 1 (dwz dat de functie alleen hoeft te werken voor a
≥ 1). Hint: gebruik een for-lus in deze functie.

Voorbeeld: AantalDelers(6) retourneert 4, omdat 1, 2, 3, en 6 de vier delers van 6 zijn.

5b. Als een getal precies twee delers heeft, dan noemen we dat getal een priemgetal.
Schrijf een functie (wederom met preconditie a ≥ 1)

int IsPriem(int a)

die 1 retourneert als a een priemgetal is, en die 0 retourneert als a geen priemgetal is.

Het is de bedoeling dat IsPriem() gebruik maakt van AantalDelers(), maar geen if, while, of for gebruikt.

5c. Schrijf de main() functie die een integer a inleest, IsPriem() gebruikt, en een van de volgende teksten
afdrukt als uitvoer:
• Invoer niet correct (moet positief zijn) als a ≤ 0,
• Een priemgetal als a groter dan 0 en priem is,
• Geen priemgetal als a groter dan 0 en niet priem is.

Opgave 6 Structures (15 pun ten)
Er zijn veel toepassingen waarbij een grote serie getallen opgeslagen moet worden (temperatuur meetwaardes
van een weersstation, pixels in een plaatje, etc.). Vanzelfsprekend komt daar de vraag dat zuinig te doen. Een
van de technieken is run-length-encoding (RLE). RLE is gebaseerd op de hoop dat opeenvolgende getallen geli jk
zijn; niet alleen de waardes worden opgeslagen maar ook het aantal keer dat die waarde achter elkaar staat. De
reeks

13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 13, 12, 12, 12, 12, 10, 10, 10, 13, 13, 13

wordt alsvolgt RLE gecodeerd

13 (5x), 14 (2x), 15 (3x), 13 (1x), 12 (4x), 10 (3x), 13 (3x)

De 21 oorspronkeli jke getallen zijn dan in 7 paren (14 getallen) gecodeerd.

Om een element uit deze RLE rij op te slaan maken we gebruik van het volgende structure

struct Paar { int waarde; int aantal; }

Een struct Paar e; met e.waarde=13 en e.aantal=5 codeert het eerste element “13 (5x)” uit onze voorbeeld rij.
De hele rij is natuurli jk een array van die elementen.We gebruiken bovendien de truc dat een speciaal element
het einde van het array aangeeft; dat is een element dat zijn aantal op 0 heeft staan.

Kortom, onze voorbeeld rij zou alsvolgt RLE gecodeerd zijn.

struct Paar rij[] = {{13,5}, {14,2}, {15,3}, {13,1}, {12,4}, {10,3}, {13,3},
{9999,0} };

6. Schrijf een functie PrintVoluit() die een RLE gecodeerde rij voluit afdrukt. In het volgende programma

PRC for E 52

#include <stdio.h>

struct Paar { int waarde; int aantal; };

void PrintVoluit(struct Paar r[])
{
 …
}

int main(void)
{
 struct Paar rij[] = {{13,5},{14,2},{15,3},{13,1},{12,4},{10,3},{13,3},{9999,0} };
 PrintVoluit(rij);
 return 0;
}

zou de uitvoer zijn

13 13 13 13 13 14 14 15 15 15 13 12 12 12 12 10 10 10 13 13 13

(einde van het tentamen)

PRC for E 53

8 Exercises
This chapter contains a section with exercises per week. It starts with an introduction on using developer studio.

As a mindset, implement the assignment in each execise as if it where a spec from another company that is
paying us. Don’ t do too littl e, don’ t do too much.

If the exercise says “ the output should be a table with the numbers nicely aligned” , alignment is part of the
assignment. It is not allowed to skip that part.

If the exercise asks to make a program printing a table with the powers for 3, don’ t write a “better” program that
asks for a number n and then prints a table with the powers of n.

8.0 Microsoft Developer Studio
In the exercises, we use Microsoft Developer Studio.

Using developer studio is quite complex the first time. It has a notion of a project. In essence, a project is a list of
source files (in our projects that will be a list containing just one source file) that all need to be compiled and
linked together in order to create the executable. A project is what gets built and without a project, developer
studio will build nothing.. In addition to projects, developer studio has the notion of a workspace. A workspace
is a set of projects. This is to accommodate large development activities where a single application consists of
several executables working together. The workspace (the set of projects) is the unit of work in developer studio.
For example, there is a window showing all files of all projects so that any file can be changed easily.

8.0.1 Advise on setting u p files, directories, workspaces and p rojects
We will now give an advise how to set up files, directories, workspaces and projects for solving the exercises
using Microsoft developer studio. These are the steps:

• Step 1: Create on a network drive (not on the harddisk of the PC we’re working on) a directory for PRC. We
would make that a subdirectory of the directory for SPR. We believe it is wise not to use capitals in files
when working cross file systems and operating systems (the network drive might be a Unix file system).
Fire up Explorer and create a directory structure like the following33

J:\maarten\spr\prc

Step 1 is a one-time action.

• Step 2: We would make a workspace per week34. Developer studio creates a directory per workspace. Fire
up developer studio, chose File | New and then tab Workspaces. In the Location editbox enter the just
created directory (or use the “…” button to browse).

33 This is an example. Maybe the drive letter is different for you, maybe there are additional top-level directories
(h:\home\studs\maarten\spr\prc).
34 This is a matter of taste. We could make one workspace for all exercises (but then the list of exercises would
be long), or we could make one workspace per exercises (but that would mean many extra (workspace) files). A
workspace per week is also easy for the teacher when a week is ready for review.

8

PRC for E 54

Next, type a name in the Workspace name editbox. We suggest week1. Observe that developer studio
automagically extents the location!

Press Ok to create the blank workspace for week1.
Let’s check the directory stucture and files created by developer studio in Explorer.

We see that indeed, developer studio has created a directory week1 in J:\maarten\spr\prc. In that directory
we see “administrative files” that developer studio has created to administer our week1 workspace. Next
time we want to work on the week1 workspace, it suffices to File | Open file week1.dsw (dsw = developer
studio workspace) or even double click week1.dsw in Explorer.

Every week, there is a new set of exercises that we will group in a workspace. Hence, step 2 needs to be
executed every week.

• Step 3: We make a project per exercise. A project is added to the workspace of the week it belongs to. So,
make sure we have the right workspace open (as created in step 2) and chose File | New and then tab
Projects.35

It is important to select Win32 Console Application.36

35 As an alternative, right click week1 in the workspace window, and select Add new Project to Workspace.
36 This determines the kind of executable the project builds. We are not going to write applications that pop-up
windows, rather we make an old fashioned text (“command-line”) oriented application. Fail ing to select the right
project kind will result in errors during the build.

PRC for E 55

In the Location editbox enter the directory of the workspace (or use the “…” button to browse). Next, type a
name in the Project name editbox. We suggest to start with the exercise number (so that exercises are sorted
in a convenient order) followed by a descriptive name (so that we as humans recall what it does). So, for
example, 1hello. Observe that developer studio once again extents the location!

Make sure the Add to current workspace is selected before creating the project by hitting Ok.
In the Wizard that pops up, just select An empty project and click Finish.

Let’s check the directory structure and files created by developer studio in Explorer.

We see that developer studio has created a directory 1hello in J:\maarten\spr\prc\week1. In that directory we
see an “administrative file” that developer studio has created to administer our 1hello project. It has also
created a Debug directory that will be fill ed with temporary files as soon as we build this project.

Every exercise must have its own project (otherwise it can’ t be built), so step 3 must be repeated for every
exercise.

• Step 4: We add a c source file to a project. So, make sure we have the right project open (as created in step
3) and chose File | New and then tab Files.

Check the Location box (it should be ok), and check that the new file will be added to the right project (Add
to project). As file type select Text File, and in the File name box enter the name of the c source file.

PRC for E 56

It is important to enter .c as extension. 37

Finally, hit Ok.

8.0.2 The edit-compile-link-execute cycle in developer studio
Usuall y the main screen of developer studio is split in three parts: the workspace (top left), the editor (top-right)
and the (build) log (bottom), as shown in the figure below. If one of those parts has disappeared, use the View
menu to get them back.

The figure shows we have a workspace (week1), with a project (1hello), with a file (hello.c).

37 Developer studio supports more programming languages then just C, most notably C++. Failing to use the .c
extension might result in developer studio using the C++ compiler instead of the C compiler, which might lead
to unexpected behavior.

PRC for E 57

• We can now edit any file. Select it in the workspace (top-left) and type in the top-right window.

• We can then start the built (via Build | Build or F7).

• If there are no build errors, we can execute 1hello.exe via Build | Execute (or ctrl-F5).

When simply running a program, use ctrl-F5 and not F5. The latter command pops up a console window,
runs the program, and when the program terminates, the console window is closed immediately. The former
command also pops up a console and runs the program, but when the program terminates it asks “Press any
key to continue”. Only after pressing any key, the console window is closed, given us time to inspect the
output generated by our program in the console window.

8.1 Exercises for week 1 – Program

8.1.1 1hello: Hello, world!
Read the section on setting up files, directories, workspaces and projects in 8.0. Create a week1 workspace, a
1hello project and a file hello.c with the famous “Hello, world!” program (see Section 1.5). Type the c code in,
save all (files, project, workspace), build the program an execute it.

8.1.2 2errors: Bugs in the program
Add a second project 2errors to week1. Add one c file to that project (errors.c) and copy the following program:

#include <stdio.h>

int main(void)
{
 printf("A line 1/n")
 printf("Another line\n");
 printf('Last line');
 return;
}

This program has three syntax errors. Build the program and see how the compiler reports them. Double click
them to open the offending line in the c file. Fix them.

The program also has a semantic error. Which one?

8.1.3 3rando m: Rando m errors
Add a third project 3random to week1. Add one c file to that project (random.c) and copy and paste the contents
of the first program (hello.c). Make each of the following errors by itself and then run the program through the
compiler to see what happens.

• Delete the first line (#include) of the above program and see what the compiler does when we forget to
include stdio.

• Delete a semicolon ‘ ;’ and see what happens.

• Leave out one of the braces ‘ { ‘ or ‘ } ’ .

• Remove one of the parenthesis ‘ (‘ or ‘)’ next to the main function.

• Change main in Main.

• Change printf in Printf.

• Delete random characters or words.

PRC for E 58

• Add random characters or words.

By simulating errors like these, we can learn about different compiler errors, and that will make our typos easier
to find when we make them for real.

Also try pressing F1, either with the cursor on some item in the editor (else, prinf), or with the cursor on the
number of a compiler editor in the build log window.

8.2 Exercises for week 2 – Intermezzo on inpu t and ou tput
Start with creating a week2 workspace (in addition to the week1 workspace).

8.2.1 1pow3: Powers of three
Add a project 1pow3 to week2. Add one c file (pow3.c). It should look something like this.

#include <stdio.h>

int main(void)
{
 …
 printf("%d^%d=%d", 3, 0, 1);
 printf("%d^%d=%d", 3, 1, 3);
 printf("%d^%d=%d", 3, 2, 3*3);
 printf("%d^%d=%d", 3, 3, 3*3*3);
 …
}

but the output should be as follows (note that the answers are aligned)

The powers of 3
3^0= 1
3^1= 3
3^2= 9
3^3= 27
3^4= 81
3^5= 243
3^6= 729
3^7= 2187
3^8= 6561
3^9=19683

We must achieve that by modifying the format strings of printf (adding padding instructions to the placeholders
and adding escape sequences).

8.2.2 2calc: Simple calculator
Add a project (2calc) to week2, and create a c file (calc.c) that implements a simple calculator. The user should
be able to enter two (floating point) numbers, and the program should print the product (*) and the quotient (/).

8.2.3 3powb: Powers of b
We are going to improve the “powers of three” program: we make it more flexible by using a variable. Add a
project 3powb to week2. Add one c file (powb.c). It should look something like this.

#include <stdio.h>

int main(void)
{
 …
 printf("%d^%d=%d", b, 0, 1);
 printf("%d^%d=%d", b, 1, b);
 printf("%d^%d=%d", b, 2, b*b);
 …
}

and it should have a declaration of b and a scanf for b. When the user runs the program and enters 3 for b, the
output of this program should be equal to the output of the original “Powers of three” program (including
alignment).

PRC for E 59

8.2.4 4printf: Printf errors
Add one more project (4printf) to week2; we are going to investigate what happens if printf gets the wrong
values.

Let the main function contain these lines:

// too many or too few numbers
printf("1=%d, 2=%d\n", 20, 30, 40);
printf("1=%d, 2=%d\n", 20);

// too many or too few strings
printf("1=%s, 2=%s\n", "ape", "nut", "mary");
printf("1=%s, 2=%s\n", "ape");

// mixing numbers and strings
printf("1=%d, 2=%d\n", 3, "ape");
printf("1=%s, 2=%s\n", "ape", 3);

How many errors do we get during compilation? Why?

How many errors do we get when running? Why?

8.3 Exercises for week 3 – Expressions

8.3.1 1check : Expressions
First, fill out the middle column of the following table

Expression Human answer Computer answer

17 & 22

17 | 22

13 & 15

13 | 15

13 && 15

0xA ^ 0xC

20 % 2

21 % 2

127/10

127.0/10.0

9 << 2

3<=5

3!=5

!(3<5)

5++

Next, create a week3 workspace, and a 1check project with a file check.c. The code should check the expressions.

#include <stdio.h>

int main(void)
{
 printf("%d & %d = %d\n", 17, 22, 17 & 22);
 … all others too …
 return 0;
}

PRC for E 60

Enter, compile/link and execute this. Fill out the last column of the previous exercise and explain any
differences.

8.3.2 2powbp : powers of b improved
Add a project 2powbp. Add one c file (powbp.c). Improve the “powers of b” program by adding a variable p and
ten assignments to p interspersed with the printf ’ s. The goal is to only execute a total of 9 multiplications.

Hint

int main(void)
{
 …
 printf("%d^%d=%d", b, 0, p);
 p= p*b;
 printf("%d^%d=%d", b, 1, p);
 …
}

8.3.3 3abc: abc formula
Let’s do some mathematics. Recall that a quadratic equation

ax2+bx+c = 0

has two solutions

a

acbb
x

2
42

1

−−−=

a

acbb
x

2
42

2

−+−=

That is, if we have as equation

2x2-6x+4 = 0

then

a=2, b= - 6, c=4

so that we have as solutions

1
4
4

4
26

4
46

4
32366

22

424)6(6 2

1 ==−=−=−−+=
⋅

⋅⋅−−−−−
=x

2
4
8

4
26

4
46

4
32366

22

424)6(6 2

2 ==+=+=−++=
⋅

⋅⋅−−+−−
=x

Conclusion: our equation has two solutions for x, namely 1 and 2.

Let’s check that
2·1²-6·1+4 = 2-6+4 =0
2·2²-6·2+4 = 8-12+4 = 0

Write a program (project 3abc) that solves the quadratic equation. Below we’ ll find a skeleton. Note the second
line that includes the math library; we’ ll need it for the function sqrt that computes the square root of a float.

PRC for E 61

#include <stdio.h>
#include <math.h> // We need this for sqrt()

int main(void)
{
 float a;
 float b;
 float c;
 float x1;
 float x2;

 scanf(… a …);
 scanf(… b …);
 scanf(… b …);

 x1= … ;
 x2= … ;

 printf("The solutions of %fx^2+%fx+%f=0 are",a,b,c);
 printf("x1=%f", x1);
 printf("x2=%f", x2);
}

Try to solve

2x2-6x+4 = 0

Next, try the following two

x2-9 = 0

x2+9 = 0

Why does the latter not work?

8.4 Exercises for week 4 – Statements
Create a week4 workspace, and make projects for each of the exercises in this section.

8.4.1 1abcd: Improving abc formula
Create a project 1abcd; it will be an improved version of the one of last week. As we may recall , the equation

x2+9 = 0

caused a run-time error. The problem is “under” the square root.

a

acbb
x

D

2
42

2,1

����

−±−=

The formula contains the square root of b2-4ac. This is called the discriminant and usually abbreviated to D. The
discriminant has the interesting property of being an indicator for how many solutions the quadratic equation
has.

• When D is negative, we can not take the square root out of it, so there are no solutions.

• When D is positive, there are two solutions.

• When D is zero, the square root of D is zero, so the formula reduces to x1,2= -b/2a, so both solution are
equal.

Copy the abc program from last week, add a variable D that computes the discriminant and add if ’s testing D so
that the program prints something along the lines of the following three variants

The equation …x^2+…x+…=0 has 2 solution(s)
x1= …
x2= …

PRC for E 62

The equation …x^2+…x+…=0 has 1 solution(s)
x= …

The equation …x^2+…x+…=0 has 0 solution(s)

8.4.2 2powfor: Power of “ for”
We have already written three versions of the program that prints the power-of table. We’re now going to write
the final one (2powfor):

• Keep the variables b and p, and let b be input (scanf).

• Use a for loop (so there should only be one * in the whole program).

• Using a pow function is forbidden.

• Add an extra variable n (input by the user via scanf) that denotes the number of rows to print.

8.4.3 3updo wn: Updown game
There is a simple “game” for which the while loop makes more sense than a for loop.

The rules of the game are as follows:

• pick a (positive integral) number

• when it is even, half it

• when it is odd, multiply it by three and add 1

• keep on doing this, unless it is 1, then the game stops.

So, when we start with 9, we get the following up/down sequence.

[9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Write a program (3updown) that let’s the user input one integer, and then prints out the up/down sequence as in
the example above (including the comma’s, spaces, brackets and a single linefeed).

By the way, can you find a number for which this program does not stop at 1?

8.4.4 4updo wntab: upd own table
Write a program (4updowntab) that prints a table of up/down sequences, started from 1 and ending at a number
that the user may input (scanf). For example, when the users inputs 20, the following table should be printed.

[1]
[2, 1]
[3, 10, 5, 16, 8, 4, 2, 1]
[4, 2, 1]
[5, 16, 8, 4, 2, 1]
[6, 3, 10, 5, 16, 8, 4, 2, 1]
[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[8, 4, 2, 1]
[9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[10, 5, 16, 8, 4, 2, 1]
[11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[12, 6, 3, 10, 5, 16, 8, 4, 2, 1]
[13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[16, 8, 4, 2, 1]
[17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[18, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
[20, 10, 5, 16, 8, 4, 2, 1]

8.5 Exercises for week 5 – Data types
Create a week5 workspace.

PRC for E 63

8.5.1 1toosmall: Too small
Write a program (1toosmall) that reads (scanf) 10 integers and then prints those that are smaller than the last one
(so we need an array to store them all).

For example, when the users inputs the following 10 numbers:

55 3 12 7 31 2 27 2 21 12

the last one is 12, so the output is

3 7 2 2

8.5.2 2dice1: Dice 1
Write a program (2dice1) that repeatedly reads (scanf) the number of dice38 eyes until the stop command is
given (the number 0). Next, the program prints a table of how often each of the numbers occurred.

So, on input 6, 1, 2, 3, 3, 1, 6, 4, 3, 1, 3, 6, 4, 0 the program prints

1 3
2 1
3 4
4 2
5 0
6 3

Note: only use one array

int dice[6];

8.5.3 3dice2: Dice 2
Write a program (3dice2) that repeatedly reads (scanf) two numbers (the number of eyes on two dices) until the
stop command is given (either of the two numbers smaller than 1 or greater than 6). Next, the program prints a
“graph” of how often each sum (2..12) occurred.

The output should look like below (where each # stands for 1 occurrence).

 2 ###
 3 #####
 4 #######
 5 #####
 6 ###########
 7 ##############
 8 #############
 9 ##########
10 #########
11 #####
12 ##

8.5.4 4sortdate: Sort dates
Write a program (4sortdate) that has an array of 5 dates (a month, and a day struct). The dates must be read
(scanf), then sorted (oldest date first) and finally printed.

Hint: the sort algorithm from the theory can be used with one modfication: the comparisson for numbers

if(a[j]<a[p])

should be changed in a comparisson for dates. When is one date smaller than the other? When the month of the
one is smaller than the month of the other, or, in case the months are equal, when the day of the one is smaller
than the day of the other.

38 The Dutch word for “dice” is “dobbelsteen” .

PRC for E 64

8.6 Exercises for week 6 – Functions
Create a week6 workspace.

It is forbidden to use global functions or global arrays for the sole purpose of passing parameters.

8.6.1 1max: Max
Write a function max, that has two integer parameters and returns the biggest of them. Write a program (1max)
that reads three integers (in main) and then prints the biggest one using the just developed max function. Of
course, the main function does not have any if itself either.

8.6.2 2digits: Number of digits
Write a function NumDigits, that takes a (positive) integer and returns the number of digits (in its decimal
notation). So passing

8530

should result in 4 (hint keep on dividing by 10 until it is 0). Write a program (2digits) that keeps on reading
integers and printing their number of digits until a non-positive integer is entered.

8.6.3 3pos: Pos
Write a function int Pos(int v, int a[] , int size), that searches an array int a (0..size-1) for an occurrence of v. If v
occurs in a, its index should be returned, if v does not occur in a, -1 should be returned.

Write a program (3pos) that has global array nums with an initializer, function Pos and main. Function main
should let the user input a number and then search for that number in nums using Pos. The result should be
printed.

As an example, assume the array is 0, 1, 4, 9, 16, 25, 36, 49, 64. When the user enters 25 the program prints 5,
when the user enters 40, the program prints –1.

8.6.4 4days : Days
The following function returns the number of days since the “birth of Jezus” , that is since January 1st 0001.

int NumDaysSince0001_01_01(int y, int m, int d)
{
 int n;
 if(m<3) { m+=12; y--; }
 n= d - 1 + (153*m+3)/5 - 92 - 306 +365*y + y/4 - y/100 + y/400;
 return n;
}

You must copy this function (NumDaysSince0001_01_01) unmodified to your program.

Write an extra function NumDays that does the same as NumDaysSince0001_01_01, but takes a struct date (as in
5.2) instead of three ints. Let NumDays call NumDaysSince0001_01_01.

Thirdly, write a function DaysPassed that takes two struct date’s, and returns the number of days between the
second date and the first (this returns a negative number if the first date is later than the second).

In main have two date variables be entered by the user, and print the number of days between them. Call the
program 4days.

PRC for E 65

9 Mistakes

9.1 Mistakes in C
This chapter lists some common mistakes in C programs.

• Using the wrong character case – case matters in C, so we cannot type Printf or PRINTF. It must be printf.

Printf("Ape"); printf("Ape");

• Forgetting to use the & in scanf.

scanf("&d", i); scanf("&d", &i);

• Type mismatch in actual parameter and the format in printf or scanf.

printf("% s", 12); printf("% i", 12)

• Too many or too few parameters following the format in printf or scanf.

printf("%d and %d", a); printf("%d and %d", a ,b)

• Forgetting to declare a variable before using it.

int Sum(int n) int Sum(int n)
{ {
 int i;
 int s= 0; int s= 0;
 for(i=0; i<n; i++) for(i=0; i<n; i++)
 s+= i; s+= i;
} }

• Putting = when we mean = = in an if or while statement.

if(x =0) if(x ==0)

• Using a = = b on floats.

float a= …; float a=…;
float b- …; float b- …;
 float epsilon= 1E-9;
if(a ==b) if(abs(a-b) <epsilon)

• Forgetting to increment the counter inside the while loop; this results in an infinite loop (the loop never
ends, so the program never ends).

int i= 0; int i= 0;
int s= 0; int s= 0;
while(i<n) while(i<n)
{ {
 s+= i; s+= i;
} i++

}

• Accidentally putting a ; at the end of a for loop or if-statement so that the for statement has no effect.

for(x=0; x<10; x++) ; for(x=0; x<10; x++)
 printf("%d\n",x); printf("%d\n",x);

• Forgetting braces after if, while or for.

9

PRC for E 66

int i= 0; int i= 0;
int s= 0; int s= 0;
while(i<n) while(i<n)
 s+= i; {
 i++; s+= i;
 i++

}

• C has no range checking, so if we index past the end of the array, it will not tell us about it. It will eventually
crash or give us garbage data. The most common instance of this error is accessing an array at its upper
bound.

int a[3];
int i= a[3]; // only a[0], a[1] and a[2] exist

• A function call must include () even if no parameters are passed. For example, C will accept x=sin; , but the
call will not work as expected. The memory address of the sin function wil l be placed into x instead. We
must say x=sin(3);.

• Using the / operator with two integers will often produce an unexpected result (no remainder), so think
about it whenever we use it.

9.2 Mistakes in Developer Studio
• Forgetting to select Win32 Console Application. This results in an error saying _winamin_ does not exist.

• Forgetting to specify a .c extension. This results in studio chosing the .cpp extension (for c plus plus) which
has an extended syntax with respect to c.

(end of book)

